Advanced Page Tables

Chapter 20

Previously in CS212...

* With the TLB for caching we can increase the speed of our page-
based address translations

* On a TLB hit, we essentially pay no penalty, on a miss, we must perform extra
expensive memory lookup operations

* While the TLB helps with speed-based optimizations, linear page
tables (as we’ve been discussing so far) take up quite a bit of precious
memory.

* We need a way to shrink the footprint of the page tables

Abbreviation Quick Reference

* Virtual Page Number (VPN) — portion of virtual address used to index page
tables/directories

* Physical Frame Number (PFN) — page that contains the data/code needed
for an operation

» Page Table Entry (PTE) — a record stored in a page table to reference pages
of memory that contain data/code and other metadata (valid, permissions,
present, etc.)

e Page Directory Entry (PDE) — a record in the page directory to indicate the
location of a requested page table

Remember that when usingkﬁaﬁing everything is stored in pages (that’s out
e

unit of storage), the page ta directory is a management structure to keep
track of used and unused pages.

Linear Page Table Sizes

* Is this really an issue?

* Assume we have:
* A 32-bit address space
* 4KB pages (4096 bytes)
* 4 Byte page table entries

* This means there are 2*32 possible addresses (~4 million)

* We squeeze those into 4KB pages (2”12 addresses per page)
e 2732 / 2712 = 21720 page entries (~1 million)

e 27220 * 4 bytes = “4MB of space used PER PROCESS

Quick Fix: Make the pages bigger!

* Assume we have:
* A 32-bit address space
* 16KB pages (16,384 bytes)
* 4 Byte page table entries

e 2732 / 2714 * 4 Bytes = ~1MB of space used per process

e Better, but what’s the drawback?
* Big pages == internal fragmentation

But surely, we aren’t using all that space?

Virtual Address Space Physical Memory PFN valid prot present dirty
10 r-X 1 0

-

- T)

code

heap

Do~NoOOsdWN O
DOoO~NOOsdWN O
' ' '

stack 15 15

% _ -
25 28
27 4

3 Correct, but don’t call me Shirley.

= ./
1

o

o

'
=e=lococo o oo oo g=c o o=

Figure 20.1: A 16KB Address Space With 1KB Pages

What if we just didn’t save invalid entries?

Hybrid Approach: Segments and Paging

* What if each process had a page table per segment

* Each segment gets a base and bounds value
* Base indicate where that segment's page table is located
* Bounds indicates how many pages are being used

* So, if we are using pages 0-2 the base points to the physical address of the page
table, and the bounds would be 3

3130292827 26252423222120191817161514131211109 8 76 5 4 32 1 O

Y
A

" Seg B VPN ' Offset

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap
11 stack

Cool, did we fix it?

e Sort of...

* we no longer need to record
unallocated pages!

* However...

* page tables are now arbitrary
in size resulting in external
fragmentation

* pages that are sparsely used
have internal fragmentation makeameme.org

Multi-level Page Tables

| HEARD YOU LIKE PAGE TABLES

Wy
\
imgflip.com % 29

PTBR = Page Table Base Register
PDBR = Page Directory Base Register

Multi-level Page Tables

* Ta ke a |inear page tab|e and Linear Page Table Multi-level Page Table
turn it into a tree structure PTBRL__201__ PDBRL___200 |
* We chop up the page table SE onn j S enn j sE e
into page-sized units i 15 § g é e RN i 15| §
* Each unit holds multiple Page w700 ¢ (208] — flwl 700 &
Table Entries (PTEs) 2 2 The Page Directory [Page 1 of PT: Not Allocated]
* We use a Page Directory to 0 5
indicate where a Page Table 0 z [Page 2 of PT: Not Allocated]
is located, and whether is is 0 5 ——T0 2
Y i i =
 Valid if at least one PTE is valid
* Invalid if a page contains no Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

valid PTEs (NOT ALLOCATED)

Advantages

* Uses less memory than a linear page table

* Pages that would containing only invalid page table entries (PTEs) are simply not
allocated and referenced by the page directory

e Compact and supports sparse address spaces

* |f constructed carefully such that each portion of the page table fits within
a page, the OS can simply allocate a new page table and update the page
directory to reference it

* The directory serves as a level of indirection so we can store the page
tables anywhere and they no longer need to be contiguous (as linear page
table required)

Disadvantages

* While we are saving space, his introduces add performance overhead
* Time-space trade-off

* We still use a TLB and cache recently used physical page frame
* On a TLB hit, performance is the same as the linear page table

* On a miss, we now need to perform additional memory look-ups to one (or
more) page directories to find our page table, so we incur additional memory
access penalties

* Complexity (hardware or software) to facilitate the page table lookups

Example: Linear Page Table
Assume a 16KB address space with 64-byte pages

« 16KB is 2714 so we need 14-bits for 0000 0000 code
. 0000 0001 code
the virtual address 0000 0010 (free)
* A linear page table requires 256 (2/8] gggg 3‘1’:); (:ee)
entries 16KB / 64-bytes (2714 / 2/6) 2000 0101 —
* Regardless of how much of that is used 0000 0110 (free)
by our process 0000 0111 (free)

* This means we have an 8-bit VPNand = . .. all free ...
a 6-bit offset 1111 1100 (free)
* Assuming each page table entry is 4 11110 —
!oytgs, this page table 256 * 4 or 1KB 1111 114 stack

in size

Figure 20.4: A 16KB Address Space With 64-byte Pages

Example: Linear to Multi-level

* Qur linear page table was 1KB
 Since we have 64-byte pages, 1KB can fit into 16 pages (1024 / 64)

e Each page can hold 16 page table entries (PTEs) (64-bytes per page / 4-bytes
per entry)

e Qur virtual addresses are 14-bits (8-bit VPN and a 6-bit offset)

 Since we have 256 entries (thus the 8-bit VPN) spread across 16 pages we
need to split up the VPN to include the Page Directory
* To reference 16 pages, we need 4-bits (24 = 16)

* Since each page has 16 PTEs per page, we need 4 more bits from the VPN to
be the page-table index
VPN offset

1
| Ll 1

13{12|11|10| 9|8 | 7|6 | 5|4 |3|2|1]|0

Page Directory Index Page Table Index

Example: Linear to Multi-level memory layout
Muti-level (192-bytes)

LI near (1 K B) Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)

0000 0000 code PFN valid? | PFN valid prot PFN valid prot
0000 0001 code 100 1 10 1 r-X - 0 —
0000 0010 (free) — 0 23 1 r-X — 0 —
0000 0011 (free) — 0 — 0 — — 0 —
0000 0100 heap — 0 - 0 — — 0 —
0000 0101 heap — 0 80 1 rw- — 0 —
0000 0110 (free) — 0 59 1 rw- — 0 —
0000 0111 (free) — 0 — 0 — — 0 —
— 0 - 0 — — 0 _
................ ... all free ... —_ 0 —_ 0 — — 0 —
1111 1100 (free) _ 0 T 0 T o 0 o
1111 1101 (free) — 0 — 0 - — 0 —
1111 1110 stack — 0 — 0 — — 0 —
1111 1111 stack — 0 — 0 — — 0 —
— 0 - 0 — — 0 _

Figure 20.4: A 16KB Address Space With 64-byte Pages — 0 — 0 — 55 1 rw-
101 1 — 0 — 45 1 rw-

. Figure 20.5: A Page Directory, And Pieces Of Page Table
A space savings of 832-bytes!

Example: Address Translation

)
* Let’s translate the address Ox3F80 Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)

111111 1000 0000 (in binary) PFN wvalid? | PEN valid prot PFN valid prot

. 100 1 10 1 r-x — 0 —

e 8-bit VPN — 0 23 1 r-x — 0 —
* Top four bits are the page directory index 8 B 8 B B 8 B

e 1111 or the 15" entry (zero based index) — 0 80 1 rw- — 0 —

e The page is valid and points to PFN 101 — 8 ? (1) T — 8 —

* The next four bits are the page table — 0 — 0 — — 0 —
index — 0 — 0 — — 0 —

« 1110 or the 14t entry (zero based index) : 8 B 8 - - 8 -

* The page is valid, and we need PFN 55 — 0 — 0 _ — 0 —

— 0 — 0 — — 0 —

 Take PFN 55 (Ox37 or 0011 0111) and — 0 — 0 — — 0 —
: — 0 — 0 — 55 1 rw-

append it to the offset 00 0000 o X o — PR o

* Phys Address: 00 1101 1100 0000 or
0x0ODCO Figure 20.5: A Page Directory, And Pieces Of Page Table

When one level of indirection is not enough

* Multi-level page tables are not limited to having one page table directory
e Why?
* We need the page table pieces to fit nicely within a page

* Assume a 30-bit virtual address space and 512-byte pages

e Of the 30-bits, we need 21 for the VPN and 9 for the offset
e 279 =512 (offset) and 30 -9 = 21 (VPN)

* Assume 4-byte PTEs, that’s 128 PTEs per 512-byte page

* Since 128 PTEs requires 7-bits for each page table index that leaves 14 bits for the
page directory index
* If the directory has 27214 entries and each entry is 512-bytes it requires 128 pages to hold the
directory ((27214 * 4-bytes) / 512-bytes)

* If we split the page directory in two, we could have 227 entries which can fit into
two 512-bytes page directories VPN offset

[1

|292827262524232221 20(19(18(17|16|15[{14(13|12|11|{10({9 |8 |7 |6|5]|4 |3

PD Index O PD Index 1 Page Table Index

Next Time

* We figured out how to shrink the size of our page tables using multi-
level page tables

* While this incurs additional memory look-up penalties, the TLB is still
present and can help with that on TBL hits

* However, a lot of things are going on in an OS, and we still might not
be able to store everything at once in RAM

* Next time we will look at ways to deal with storing things outside of
RAM when we need more space

