
Advanced Page Tables
Chapter 20

Previously in CS212…
• With the TLB for caching we can increase the speed of our page-

based address translations
• On a TLB hit, we essentially pay no penalty, on a miss, we must perform extra

expensive memory lookup operations

• While the TLB helps with speed-based optimizations, linear page
tables (as we’ve been discussing so far) take up quite a bit of precious
memory.

• We need a way to shrink the footprint of the page tables

Abbreviation Quick Reference

• Virtual Page Number (VPN) – portion of virtual address used to index page
tables/directories
• Physical Frame Number (PFN) – page that contains the data/code needed

for an operation
• Page Table Entry (PTE) – a record stored in a page table to reference pages

of memory that contain data/code and other metadata (valid, permissions,
present, etc.)
• Page Directory Entry (PDE) – a record in the page directory to indicate the

location of a requested page table

Remember that when using paging everything is stored in pages (that’s out
unit of storage), the page table/directory is a management structure to keep
track of used and unused pages.

Linear Page Table Sizes

• Is this really an issue?
• Assume we have:
• A 32-bit address space
• 4KB pages (4096 bytes)
• 4 Byte page table entries

• This means there are 2^32 possible addresses (~4 million)
• We squeeze those into 4KB pages (2^12 addresses per page)
• 2^32 / 2^12 = 2^20 page entries (~1 million)
• 2^20 * 4 bytes = ~4MB of space used PER PROCESS

We need to fix this...

Quick Fix: Make the pages bigger!

• Assume we have:
• A 32-bit address space
• 16KB pages (16,384 bytes)
• 4 Byte page table entries

• 2^32 / 2^14 * 4 Bytes = ~1MB of space used per process

• Better, but what’s the drawback?
• Big pages == internal fragmentation

But surely, we aren’t using all that space?

Correct, but don’t call me Shirley.

What if we just didn’t save invalid entries?

Hybrid Approach: Segments and Paging
• What if each process had a page table per segment
• Each segment gets a base and bounds value
• Base indicate where that segment's page table is located
• Bounds indicates how many pages are being used
• So, if we are using pages 0-2 the base points to the physical address of the page

table, and the bounds would be 3

Cool, did we fix it?

• Sort of…
• we no longer need to record

unallocated pages!

• However…
• page tables are now arbitrary

in size resulting in external
fragmentation
• pages that are sparsely used

have internal fragmentation

Multi-level Page Tables

Multi-level Page Tables
• Take a linear page table and

turn it into a tree structure
• We chop up the page table

into page-sized units
• Each unit holds multiple Page

Table Entries (PTEs)
• We use a Page Directory to

indicate where a Page Table
is located, and whether is is
valid
• Valid if at least one PTE is valid
• Invalid if a page contains no

valid PTEs (NOT ALLOCATED)

PTBR = Page Table Base Register
PDBR = Page Directory Base Register

Advantages

• Uses less memory than a linear page table
• Pages that would containing only invalid page table entries (PTEs) are simply not

allocated and referenced by the page directory
• Compact and supports sparse address spaces

• If constructed carefully such that each portion of the page table fits within
a page, the OS can simply allocate a new page table and update the page
directory to reference it

• The directory serves as a level of indirection so we can store the page
tables anywhere and they no longer need to be contiguous (as linear page
table required)

Disadvantages

• While we are saving space, his introduces add performance overhead
• Time-space trade-off

• We still use a TLB and cache recently used physical page frame
• On a TLB hit, performance is the same as the linear page table
• On a miss, we now need to perform additional memory look-ups to one (or

more) page directories to find our page table, so we incur additional memory
access penalties

• Complexity (hardware or software) to facilitate the page table lookups

Example: Linear Page Table

• 16KB is 2^14 so we need 14-bits for
the virtual address
• A linear page table requires 256 (2^8)

entries 16KB / 64-bytes (2^14 / 2^6)
• Regardless of how much of that is used

by our process
• This means we have an 8-bit VPN and

a 6-bit offset
• Assuming each page table entry is 4

bytes, this page table 256 * 4 or 1KB
in size

Assume a 16KB address space with 64-byte pages

Example: Linear to Multi-level
• Our linear page table was 1KB
• Since we have 64-byte pages, 1KB can fit into 16 pages (1024 / 64)
• Each page can hold 16 page table entries (PTEs) (64-bytes per page / 4-bytes

per entry)

• Our virtual addresses are 14-bits (8-bit VPN and a 6-bit offset)
• Since we have 256 entries (thus the 8-bit VPN) spread across 16 pages we

need to split up the VPN to include the Page Directory
• To reference 16 pages, we need 4-bits (2^4 = 16)

• Since each page has 16 PTEs per page, we need 4 more bits from the VPN to
be the page-table index

Example: Linear to Multi-level memory layout

Linear (1KB)
Muti-level (192-bytes)

A space savings of 832-bytes!

Example: Address Translation
• Let’s translate the address 0x3F80

• 11 1111 1000 0000 (in binary)

• 8-bit VPN
• Top four bits are the page directory index

• 1111 or the 15th entry (zero based index)
• The page is valid and points to PFN 101
• The next four bits are the page table

index
• 1110 or the 14th entry (zero based index)

• The page is valid, and we need PFN 55

• Take PFN 55 (0x37 or 0011 0111) and
append it to the offset 00 0000
• Phys Address: 00 1101 1100 0000 or

0x0DC0

When one level of indirection is not enough
• Multi-level page tables are not limited to having one page table directory

• Why?
• We need the page table pieces to fit nicely within a page

• Assume a 30-bit virtual address space and 512-byte pages
• Of the 30-bits, we need 21 for the VPN and 9 for the offset

• 2^9 = 512 (offset) and 30 – 9 = 21 (VPN)
• Assume 4-byte PTEs, that’s 128 PTEs per 512-byte page
• Since 128 PTEs requires 7-bits for each page table index that leaves 14 bits for the

page directory index
• If the directory has 2^14 entries and each entry is 512-bytes it requires 128 pages to hold the

directory ((2^14 * 4-bytes) / 512-bytes)
• If we split the page directory in two, we could have 2^7 entries which can fit into

two 512-bytes page directories

Next Time

• We figured out how to shrink the size of our page tables using multi-
level page tables

• While this incurs additional memory look-up penalties, the TLB is still
present and can help with that on TBL hits

• However, a lot of things are going on in an OS, and we still might not
be able to store everything at once in RAM

• Next time we will look at ways to deal with storing things outside of
RAM when we need more space

