
Faster Paging with TLBs
Chapter 19



Previously in CS212…
• Paging is a flexible means of allocating memory
• Fixed sized blocks means no external fragmentation
• If we “outgrow” a page, we can allocate another page for more storage

• Page Tables are:
• Per process
• Large and need to be stored in memory
• Memory access is slow, but needed for each data/instruction address 

translation to locate the page in physical memory

• We need a way to do this better!



Translation-lookaside buffer (TLB)

• Located on the CPU’s memory-management unit (MMU)

• A hardware cache of popular virtual-to-physical address translations
• Smaller storage space compared to primary memory (RAM), but faster

• Each time a virtual memory request is made, the hardware checks the 
TLB first to see if we already know that translation
• If the translation is present, we don’t need to check the page table



The Basics*

• A request is made for a virtual address
• Extract the VPN (virtual page number)
• Check the TLB to see if we know the associated PFN (page frame number)

• If we find the translation, we have a TLB hit
• append the PFN from the TLB to the virtual address offset bits to generate a physical 

address

• If we don’t find the translation, we have a TLB miss
• Look up the VPN in the page table and store the value in the TLB if it is valid
• Check the TLB again

*Assumes linear page table and hardware based TLB management



Why is it faster?

• The TLB is located near the CPU, so access is faster than primary 
memory (raw speed)

• Caching common translations on average should produce more hits 
than misses and reduce the expensive page table lookup in primary 
memory

• Leverages the Principles of:
• Spatial locality – related things may be near each other
• Temporal locality – things recently access may be needed again soon



Example
• Our first request to array index 0 

is a TLB Miss. We look up the PFN 
and cache it for VPN 06
• The subsequent two access are in 

the same page, so we have TLB 
hits
• VPN 7 is a miss the first time, but 

the next three access are hits
• The process repeats for VPN 08
• 3 misses and 7 hits
• Hit rate = 70%

TLB Cache:
• 06
• 07
• 08



A Swing and a TBL Miss

• Either hardware or software can respond to a TLB miss

• Hardware requires a page-table base register and must know the exact 
format of the table in memory
• Less trust in the OS

• Software uses the LDE concept to raise an exception, raise privilege, and 
jump to trap handler code to find the translation in the page table and 
update the TLB
• Simplicity and flexibility

• Note that the TLB is checked twice on a miss. What is the implication to the 
LDE process?



Challenges

• Context Switching
• Page table address translations are per process!

• Should we flush the TLB when we switch process?
• Save an address space identifier (ASID) to link the translation to a process?

• Cache Replacement Policy
• We can’t hold everything; how do we decide what to keep and what to purge 

from the cache?
• Least-recently-used (LRU), random, etc.

• TLB Coverage
• If a program requests more unique pages than the TLB can hold, we will start 

to generate many misses and lose performance



Next Time…

• We’ve found a way to improve performance for page tables with TLB 
caching, but we haven’t addressed the amount of storage required for 
page tables in memory

• We will look at a more complex variation of page tables to help 
mitigate that issue


