
Paging
Chapter 18

Previously in CS212…
• We solved internal fragmentation (space between stack and heap)

with the concept of segments.
• But we now caused external fragmentation and wasted space in between

segments

• Can we somehow use fixed sized blocks in a more efficient way to
balance the detriments from internal fragmentation and limit external
fragmentation?

Paging

• Keep the idea of segmentation, but split the address space into fixed
sized units called pages to hold the segments (no more variable sizes
allocation units) and do the same for physical memory with page
frames

Advantages of Paging

• Supports a flexible address space abstraction
• No special treatment for heap and stack growth

• Simplicity
• Pages and page frames are the same size
• Easy to allocate and keep free list

Address Translation

• Need a new per-process structure called the page table
• Inverted page tables are an exception

• Stores address translations from pages in address space to page
frames in physical memory

• Need two things for each virtual address:
• VPN: Virtual Page Number
• Offset within the page

Example
• Suppose we have a 64-byte address space. How

many bits do we need to represent that?
• 26 = 64 which means we have 6 total bits

• If each page is 16 bytes how many pages will
we have
• 64 / 16 = 4 pages

• How many bits will we need to represent 4
pages?
• 22 = 4 which means we have 2 bits for the VPN
• 00, 01, 10, 11

• How many bytes does that leave for the offset?
• 6 bits – 2-bit VPN = 4-bit offset

Virtual to Physical Address

• Page table provides the address
translation

• Offset remains the same

• Example virtual address “21”
• First page, 5th byte offset

• Page table finds physical location of
the first page for the physical address

Storing Page Tables

• Can get very big

• 32-bit address space with 4KB (4096 bytes) pages
• Addressing 4K requires 12-bits (212 = 4096)
• Leaves 20-bits for VPN (~ 1 Million pages)

• Fun fact: At 4KB per page that is 4GB, the approximate limit of addressable RAM on a 32-bit OS
• If each page table entry is 4 bytes that uses 4 MB of ram

• With 100 processes, that’s 400 MB!

• Can’t store them on the CPU (MMU) so we need the page tables in memory
somewhere

Page Table Anatomy

• In the simplest representation, a linear page table is an array. The OS
indexes page table by the virtual page number to find the page table
entry (PTE) to find the physical frame number (PFN).

• A PTE can contain bits for:
• Valid (is the translation valid) – unused space is also marked invalid

• Important for sparse address space (we don’t need to allocate frames for those pages
• Protection – permissions to the page (Read, write, execute)
• Present – In or out of physical memory (can be moved to disk)
• Dirty – has page been modified
• Reference – has the page been accessed

Paging Disadvantage

• Slow!

• No longer simply applying base and bound approach to for calculation

• Need to reference the page table for each code line and data in
memory
• Faster than disc, but still way slower than register computation

Disadvantage in practice

10 memory access
requests per loop!

Next Time…

• This is the end of the content for the exam

• Weds we will work on the Unix Shell

• Attendance on Wednesday is NOT optional
• Leaving early is not permitted either (unless there is a valid reason)

• Work on the assignments, if you finish early, look over the study guide
and prepare questions for Friday

