Free-Space Management

Chapter 17

Previously in CS212...

* We solved internal fragmentation (space between stack and heap)
with the concept of segments.

* But we now caused external fragmentation and wasted space in between
segments

* Discussed how we can expand the base and bounds registers to
accommodate segments

* Changes this makes to the way we translate virtual addresses to physical
addresses

* But we really haven’t talked about how we decide where things go in
memory and how we keep track...

Recap Segmentation and Fragmentation

* Segmentation allows for reserved memory to be of varying sizes

* This means that sometimes while the total amount of free space in
memory would allow for a segment to be created, there are no
contiguous sections large enough fit the segment (external
fragmentation)

free used free
0 10 20 30

* While I 20K free total, | only have two 10K sections | can use

Splitting and Coalescing

* Splitting

* |f the free list has some space to accommodate
a smaller memory request, it will divide up a

larger space.

* A one-byte request filled by the second free

space changes the free list

* Coalescing

* Merge contiguous free space in the free list

* Free the used ten bytes

free used free

10 20 30

roas —» (498 — SR — s

Splitting

head —» Iaednd:ng B acljednr::g1 — NULL

Coalescing

head —» 29900 —» NULL

Determining Memory Size

* Malloc takes up slightly more space

than requested to accommodate a
header block

* This block (minimally) contains:

* Size for quick pointer arithmetic for
the used region

* Magic for data integrity

hptr

ptr

>

size: 20

magic: 1234567

>

= The 20 bytes returned to caller

head >

Example

size:

4088

next:

* We setup a free list in the
Heap

* Size is 4K (little less due to
the header)

* head is the pointer for the
free list

[virtual address: 16KB]
header: size field

header: next field (NULL is 0)

the rest of the 4KB chunk

Example

* A program mallocs 100
bytes worth of data

* 8 extra bytes for the
header

* We split the free space
and update the size of the
free list header

ptr

head

size: 100
magic: 1234567
>
|
size: 3980
next: 0

[virtual address: 16KB]

The 100 bytes now allocated

The free 3980 byte chunk

Example

 Two more requests for
100 bytes are made

* Head pointer is updated

sptr

head

size: 100

magic: 1234567

size: 100

magic: 1234567
} =
size: 100

magic: 1234567

>

size: 3764

next: 0

[virtual address: 16KB]

= 100 bytes still allocated

= 100 bytes still allocated

(but about to be freed)

= 100-bytes still allocated

The free 3764-byte chunk

Example

 Middle chunk is freed

e Head is moved to reference
that newly free 100 bytes

* The next free space pointer
is updated

* 100 bytes of external
fragmentation

head

sptr

size: 100

magic: 1234567

>

size: 100

[virtual address: 16KB]

= 100 bytes still allocated

next: 16708
»
size: 100

magic: 1234567

size: 3764 | «

(now a free chunk of memory)

~ 100-bytes still allocated

next: 0

= The free 3764-byte chunk

[virtual address: 16KB]
size: 100 | =
next: 16492
Example
(now free)
* As the remaining memory il
. . . xt: 16708
is freed, the list pointers ®
are updated now free)
head >
. size: 100
* Coalescing the free spaces o
is necessary in the free list
to restore the heap’s Tt (now free)
actual capacity
size: 3764 | «
next: 0
The free 3764-byte chunk

Memory Allocation Strategies

* Best Fit

* Find space in free list as big or bigger than requested and return the smallest
* Naive approach has heavy performance penalty from searching

e Worst Fit

* Find the largest chunk, split it, and return the requested amount
e Costly search and poor performing with excess fragmentation

* First Fit
* Find the first block big enough to fit and return the requested amount

* Lower overhead, can use address-based ordering for free space to further reduce
overhead and fragmentation

* Next Fit
e Keep an extra pointer to in the list to where the last free space was allocated
* Spread the free space more uniformly
* Like first fit otherwise

Example - Best Fit

20 is the smallest space that fits

e Assume a request for 15K head —» 10 —» 30 —> 20 — NULL

was made, what does the
free list look like now?

head—» 10 —» 30 —» 5 —» NULL

Example — Worst Fit

30 is the largest space that fits

e Assume a request for 15K head —» 10 —» 30 —» 20 —» NULL

was made, what does the
free list look like now?

head — 10 —» 15 —» 20 —» NULL

Example — First Fit

10 is the first open space large enough

e Assume a request for 10K head — 10 —» 30 —>» 20 —» NULL

was made, what does the
free list look like now?

head — 30 —» 20 —» NULL

Example — Next Fit

Previous ptr 30 is the next slot that can fit 15K

* Assume a request for 15K head — 10 —» 30 —» 20 —» NULL
was made, and 10 was the
location of the previous

allocation. What does the
free list look like now?

head — 10 —» 15 —» 20 —» NULL

Segregated Lists

* |dea is to reserve a chunk of memory solely for common sized

objects/requests
* Easy to know if/where they fit, and minimize external fragmentation

* All other requests are served by a general memory allocating
algorithm

* Slab allocator is an extension of this approach for storing kernel

objects

* Uses automatic reference counting (no pointers to the memory, must not be
used)

* Freed objects were preinitialized to reduce overhead.

Buddy Allocation

* When a request is made, recursively divide up free memory by two
until a block that is big enough to fit is found
* E.g. An additional division by two would be too small
* Management of the free space is a tree

* Fixed size blocks lead to internal fragmentation

* Freeing memory is automatically coalesced by checking the “buddies”
of the memory that was freed recursively and stopping when a buddy
IS In use

Next Time...

* We looked at some approaches to allocating memory when
considering

* We saw that some better performing algorithms balance fixed size
memory with some degree of flexibility

 We will look at a different model for distributing memory to our
processes

