
Free-Space Management
Chapter 17

Previously in CS212…
• We solved internal fragmentation (space between stack and heap)

with the concept of segments.
• But we now caused external fragmentation and wasted space in between

segments

• Discussed how we can expand the base and bounds registers to
accommodate segments
• Changes this makes to the way we translate virtual addresses to physical

addresses

• But we really haven’t talked about how we decide where things go in
memory and how we keep track…

Recap Segmentation and Fragmentation

• Segmentation allows for reserved memory to be of varying sizes

• This means that sometimes while the total amount of free space in
memory would allow for a segment to be created, there are no
contiguous sections large enough fit the segment (external
fragmentation)

• While I 20K free total, I only have two 10K sections I can use

Splitting and Coalescing

• Splitting
• If the free list has some space to accommodate

a smaller memory request, it will divide up a
larger space.
• A one-byte request filled by the second free

space changes the free list

• Coalescing
• Merge contiguous free space in the free list
• Free the used ten bytes

Splitting

Coalescing

Determining Memory Size

• Malloc takes up slightly more space
than requested to accommodate a
header block

• This block (minimally) contains:
• Size for quick pointer arithmetic for

the used region
• Magic for data integrity

Example

• We setup a free list in the
Heap

• Size is 4K (little less due to
the header)

• head is the pointer for the
free list

Example

• A program mallocs 100
bytes worth of data
• 8 extra bytes for the

header
• We split the free space

and update the size of the
free list header

Example

• Two more requests for
100 bytes are made

• Head pointer is updated

Example

• Middle chunk is freed
• Head is moved to reference

that newly free 100 bytes
• The next free space pointer

is updated
• 100 bytes of external

fragmentation

Example

• As the remaining memory
is freed, the list pointers
are updated

• Coalescing the free spaces
is necessary in the free list
to restore the heap’s
actual capacity

Memory Allocation Strategies
• Best Fit
• Find space in free list as big or bigger than requested and return the smallest
• Naïve approach has heavy performance penalty from searching

• Worst Fit
• Find the largest chunk, split it, and return the requested amount
• Costly search and poor performing with excess fragmentation

• First Fit
• Find the first block big enough to fit and return the requested amount
• Lower overhead, can use address-based ordering for free space to further reduce

overhead and fragmentation
• Next Fit
• Keep an extra pointer to in the list to where the last free space was allocated
• Spread the free space more uniformly
• Like first fit otherwise

Example - Best Fit

• Assume a request for 15K
was made, what does the
free list look like now?

20 is the smallest space that fits

Example – Worst Fit

• Assume a request for 15K
was made, what does the
free list look like now?

30 is the largest space that fits

Example – First Fit

• Assume a request for 10K
was made, what does the
free list look like now?

10 is the first open space large enough

Example – Next Fit

• Assume a request for 15K
was made, and 10 was the
location of the previous
allocation. What does the
free list look like now?

Previous ptr 30 is the next slot that can fit 15K

Segregated Lists

• Idea is to reserve a chunk of memory solely for common sized
objects/requests
• Easy to know if/where they fit, and minimize external fragmentation

• All other requests are served by a general memory allocating
algorithm
• Slab allocator is an extension of this approach for storing kernel

objects
• Uses automatic reference counting (no pointers to the memory, must not be

used)
• Freed objects were preinitialized to reduce overhead.

Buddy Allocation

• When a request is made, recursively divide up free memory by two
until a block that is big enough to fit is found
• E.g. An additional division by two would be too small
• Management of the free space is a tree

• Fixed size blocks lead to internal fragmentation

• Freeing memory is automatically coalesced by checking the “buddies”
of the memory that was freed recursively and stopping when a buddy
is in use

Next Time…

• We looked at some approaches to allocating memory when
considering

• We saw that some better performing algorithms balance fixed size
memory with some degree of flexibility

• We will look at a different model for distributing memory to our
processes

