Segmentation

Chapter 16



Previously in CS212...

 Discussed Address Translation for process relocation
* Allows Virtual Address Space to be mapped to Physical Address Space

* The role of the OS and Hardware in process relocation

* Wondered if we could avoid internal fragmentation empty free space
between stack and heap



Segmentat|on Virtual Memory

0KB

Physical Memory 1KB Program Code
* Generalize the concept of the base and oKB 2K
bound register e
Operating System AKB
16KB SKB Heap
* Keep track of base and bounds of each (not in use) o8
segment of a process Sk e
39KB (notC mduse) l
* Program code Cods
e Stack ¢
¢ Heap 48KB (free)
(not in use)
* We are now free to place each segment 64KB 1
anywhere in physical memory with varying 14K8
sizes... AWESOME! PR s

16KB




Address Translation for Segments

Segment Base Size

* We want virtual address 100 (bytes)

* Program code starts at 0, so it’s 100
bytes away from the base 32K
100+ 32,768 =32,868 (100 < 2K safe!)

e We want virtual address 4200

* Heap starts at 4,096 (4KB)
e 34K + 42007

Code

Heap

Stack
OKB

16KB

32KB

48KB

64KB

32K 2K
34K 3K
28K 2K

Operating System

(not in use)

t
Stack

(not in use)

Code

Heap

¥

(not in use)

0KB

1KB

2KB

3KB

4KB

5KB

6KB

7KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack




0KB

Address Translation for Segments
2KB
Segment Base Size 3KB
: Cod 3PK 2K
* We want virtual address 100 (bytes) Heap 34K 3K 4B
* Program code starts at O, so it’s 100 bytes ek @R AN 5KB o
away from the base 32K oKB 6KB
100 + 32,768 = 32,868 (100 < 2K safe!) Operating System 7KB
* We want virtual address 4200 16KB l
* Heap starts at 4,096 (4KB) (ot use)
* 34K + 4200 = 39,016 NOPE! soxe | @tnuss 7
Htiap
B
SEGMENTATION FAULT 46KE 1
(not in use) 14KB
15KB
Stack

64KB 16KB



Address Translation for Segments

Segment Base Size

* We want virtual address 100 (bytes)

* Program code starts at 0, so it’s 100 bytes
away from the base 32K
100+ 32,768 =32,868 (100 < 2K safe!)

e We want virtual address 4200

* Heap starts at 4,096 (4KB)

* Need the virtual offset into the Heap first
e 4200K — 4096 = 104-byte offset

* Now use the offset 34,816 + 104 = 34,920

Code

Heap

Stack
OKB

16KB

32KB

48KB

64KB

32K 2K
34K 3K
28K 2K

Operating System

(not in use)

t
Stack

(not in use)

Code

Heap

¥

(not in use)

0KB

1KB

2KB

3KB

4KB

5KB

6KB

7KB

14KB

15KB

16KB

Program Code

Heap

(free)

Stack




|[dentifying the Correct Segment

* Explicit
* Supply bits along with the virtual address to determine which segment we are
interested in

* For our three-segment approach we need two bits
* 00— Program Code

13121110 9 8 7 6 5 4 3 2 1 0 ;
° 01 — Heap Offset 104 in the
. 11_Stack IO 1“0 0 O 0 0 1 1 O 1 O 0 OI Heap Segment
.. Segr'nent Offset
* Implicit
* Hardware checks what data was used to produce the offset and deduces the
segment

* Program counter — code segment
* Base pointer —stack segment
* Other — heap segment



Stack Segment Address Translation

Segment Base Size (max4K) Grows Positive?

COde()() 32K 2K 1
e The stack is an odd case for the address Heapor ~ 34K 3K 1
. . )) )) . StaCkll 28K 2K O
translation as it “grows” in a negative
0KB

direction (toward lower addresses)

. Operating Syst
* Requires more hardware support to PRIaTng SyStem

(free)

indicate positive growth with the offset 16KB
. (not in use)
* Access stack at virtual address 15K N
* The stack can be a maximum of 4K which 32KB RN 1
means at it’s largest, the stack can reach SR 14KB
12K virtual memory 15KB
Stack
e 15K — 12K = 3K the offset 48KB (not in use) 16KB

e 4K - 3K is 1K backwards from the base
e 28K—-1K=27K

64KB




Sharing Memory

* Wait...you said we didn’t share memory between processes
* True, | did say that, and we still support that abstraction the process may

not realize this is happening

* Code sharing is something that is commonly still done
* Can you think of a reason why?

* If we add a little extra hardware, we can keep track of permissions

p €rs eg ment Segment Base Size (max4K) Grows Positive? Protection
Codeoo 32K 2K 1 Read-Execute

Heapo: 34K 3K 1 Read-Write

2K 0 Read-Write

Stack1 1 28K



Challenges

* Segments can be coarse (fewer large chunks) or
fine grained (many smaller chunks)

* Segments helped with internal fragmentation,
but cause external fragmentation

e Can compact the memory to better layout used
memory

* An expensive operation that can result in more
compaction later as memory needs change

0KB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Not Compacted

Operating System

(not in use)

Allocated

(not in use)

Allocated

(not in use)

Allocated

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Compacted

Operating System

Allocated

(not in use)




Next Time...

* We solved internal fragmentation (space between stack and heap)
but now we cause external fragmentation and waste space in
between segments

 Compaction can help us to resolve wasted space, but it’s expensive

* While there isn’t a perfect solution, we need to find a compromise
between efficient resource usage and performance



