Segmentation

Chapter 16



Previously in CS212...

 Discussed Address Translation for process relocation
* Allows Virtual Address Space to be mapped to Physical Address Space

* The role of the OS and Hardware in process relocation

* Wondered if we could avoid internal fragmentation empty free space
between stack and heap
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Address Translation for Segments

Segment Base Size

* We want virtual address 100 (bytes)

* Program code starts at 0, so it’s 100
bytes away from the base 32K
100+ 32,768 =32,868 (100 < 2K safe!)

e We want virtual address 4200

* Heap starts at 4,096 (4KB)
e 34K + 42007
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Address Translation for Segments

Segment Base Size

* We want virtual address 100 (bytes)

* Program code starts at 0, so it’s 100 bytes
away from the base 32K
100+ 32,768 =32,868 (100 < 2K safe!)

e We want virtual address 4200

* Heap starts at 4,096 (4KB)

* Need the virtual offset into the Heap first
e 4200K — 4096 = 104-byte offset

* Now use the offset 34,816 + 104 = 34,920
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|[dentifying the Correct Segment

* Explicit
* Supply bits along with the virtual address to determine which segment we are
interested in

* For our three-segment approach we need two bits
* 00— Program Code

13121110 9 8 7 6 5 4 3 2 1 0 ;
° 01 — Heap Offset 104 in the
. 11_Stack IO 1“0 0 O 0 0 1 1 O 1 O 0 OI Heap Segment
.. Segr'nent Offset
* Implicit
* Hardware checks what data was used to produce the offset and deduces the
segment

* Program counter — code segment
* Base pointer —stack segment
* Other — heap segment



Stack Segment Address Translation

Segment Base Size (max4K) Grows Positive?

COde()() 32K 2K 1
e The stack is an odd case for the address Heapor ~ 34K 3K 1
. . )) )) . StaCkll 28K 2K O
translation as it “grows” in a negative
0KB

direction (toward lower addresses)

. Operating Syst
* Requires more hardware support to PRIaTng SyStem

(free)

indicate positive growth with the offset 16KB
. (not in use)
* Access stack at virtual address 15K N
* The stack can be a maximum of 4K which 32KB RN 1
means at it’s largest, the stack can reach SR 14KB
12K virtual memory 15KB
Stack
e 15K — 12K = 3K the offset 48KB (not in use) 16KB

e 4K - 3K is 1K backwards from the base
e 28K—-1K=27K

64KB




Sharing Memory

* Wait...you said we didn’t share memory between processes
* True, | did say that, and we still support that abstraction the process may

not realize this is happening

* Code sharing is something that is commonly still done
* Can you think of a reason why?

* If we add a little extra hardware, we can keep track of permissions

p €rs eg ment Segment Base Size (max4K) Grows Positive? Protection
Codeoo 32K 2K 1 Read-Execute

Heapo: 34K 3K 1 Read-Write

2K 0 Read-Write

Stack1 1 28K



Challenges

* Segments can be coarse (fewer large chunks) or
fine grained (many smaller chunks)

* Segments helped with internal fragmentation,
but cause external fragmentation

e Can compact the memory to better layout used
memory

* An expensive operation that can result in more
compaction later as memory needs change
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Next Time...

* We solved internal fragmentation (space between stack and heap)
but now we cause external fragmentation and waste space in
between segments

 Compaction can help us to resolve wasted space, but it’s expensive

* While there isn’t a perfect solution, we need to find a compromise
between efficient resource usage and performance



