
Segmentation
Chapter 16



Previously in CS212…
• Discussed Address Translation for process relocation
• Allows Virtual Address Space to be mapped to Physical Address Space

• The role of the OS and Hardware in process relocation

• Wondered if we could avoid internal fragmentation empty free space 
between stack and heap



Segmentation

• Generalize the concept of the base and 
bound register

• Keep track of base and bounds of each 
segment of a process
• Program code
• Stack
• Heap

• We are now free to place each segment 
anywhere in physical memory with varying 
sizes… AWESOME!

Physical Memory

Virtual Memory



Address Translation for Segments

• We want virtual address 100 (bytes)
• Program code starts at 0, so it’s 100 

bytes away from the base 32K
• 100 + 32,768 = 32,868 (100 < 2K safe!)

• We want virtual address 4200
• Heap starts at 4,096 (4KB)
• 34K + 4200?



Address Translation for Segments

• We want virtual address 100 (bytes)
• Program code starts at 0, so it’s 100 bytes 

away from the base 32K
• 100 + 32,768 = 32,868 (100 < 2K safe!)

• We want virtual address 4200
• Heap starts at 4,096 (4KB)
• 34K + 4200 = 39,016

SEGMENTATION FAULT

NOPE!



Address Translation for Segments

• We want virtual address 100 (bytes)
• Program code starts at 0, so it’s 100 bytes 

away from the base 32K
• 100 + 32,768 = 32,868 (100 < 2K safe!)

• We want virtual address 4200
• Heap starts at 4,096 (4KB)
• Need the virtual offset into the Heap first

• 4200K – 4096 = 104-byte offset
• Now use the offset 34,816 + 104 = 34,920 YES!



Identifying the Correct Segment

• Explicit
• Supply bits along with the virtual address to determine which segment we are 

interested in
• For our three-segment approach we need two bits

• 00 – Program Code
• 01 – Heap
• 11 – Stack

• Implicit
• Hardware checks what data was used to produce the offset and deduces the 

segment 
• Program counter – code segment
• Base pointer – stack segment
• Other – heap segment

Offset 104 in the 
Heap segment



Stack Segment Address Translation

• The stack is an odd case for the address 
translation as it ”grows” in a negative 
direction (toward lower addresses)
• Requires more hardware support to 

indicate positive growth with the offset
• Access stack at virtual address 15K
• The stack can be a maximum of 4K which 

means at it’s largest, the stack can reach 
12K virtual memory
• 15K – 12K = 3K the offset
• 4K – 3K is 1K backwards from the base
• 28K – 1K = 27K



Sharing Memory

• Wait…you said we didn’t share memory between processes
• True, I did say that, and we still support that abstraction the process may 

not realize this is happening

• Code sharing is something that is commonly still done
• Can you think of a reason why?

• If we add a little extra hardware, we can keep track of permissions 
per segment



Challenges
• Segments can be coarse (fewer large chunks) or 

fine grained (many smaller chunks)

• Segments helped with internal fragmentation, 
but cause external fragmentation

• Can compact the memory to better layout used 
memory
• An expensive operation that can result in more 

compaction later as memory needs change



Next Time…

• We solved internal fragmentation (space between stack and heap) 
but now we cause external fragmentation and waste space in 
between segments

• Compaction can help us to resolve wasted space, but it’s expensive

• While there isn’t a perfect solution, we need to find a compromise 
between efficient resource usage and performance


