Address Translation

Chapter 15

Previously in CS212...

* Examined the concept of virtual memory and the address space abstraction
* Each process gets its own space in memory
* This space is isolated from other processes

* Reviewed the memory API provided by our OS
 Malloc, Calloc, Realloc, Free

* Experimented with tools for checking memory usage and debugging
 GDB Debugger
* Valgrind

* But do we manage virtual memory?

Process Address space

* Process A is loaded into an address space

e stores 3,000 to a variable and increments the value
by 3

* We have three lines of code at bytes: 128, 132,
and 135

* We have the value of the variable (3,000) stored
at 15KB

OKB 128

132

1KB 135

2KB

mov! 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

Program Code

3KB

Heap

4KB

14KB

15KB

(free)

3000
Stack

16KB

We Need Address Translation

* Assuming the process image isin a
contiguous block of memory...

* OS decided where in physical
memory the process goes

* We need to know how to go from
virtual addresses to physical
addresses

* 128B+ 32,768 B=32,896 B
* 15KB+32KB=47KB

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

ode

€ap
!
(allocated but not in use)

t
Stack

(not in use)

Relocated Process

OKB 128

132

1KB 135

2KB

3KB

4KB

14KB

15KB

16KB

mov! 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

Program Code

Heap

(free)

3000

Stack

Memory Management Unit
* Hardware built into the CPU

* Keeps two registers
* base - starting address

* bound - can be the size of the process image or the physical address for the
end of the process image

* Converts virtual to physical addresses
* Physical address = virtual address + base
* Checks to ensure the bounds are not violated

Example

* Assume a process is loaded to physical address at 32KB and all
process images are 64KB. Compute the translations.

Virtual Address Physical Address

O Bytes P77
10 KB ?7?7?
50KB ?7?7?

/0KB 277

Example

* Assume a process is loaded to physical address at 32KB and all
process images are 64KB. Compute the translations

Virtual Address Physical Address

O Bytes 32KB = 0 Bytes + 32KB
10 KB 42KB = 10KB + 32KB
50KB 82KB = 50KB + 32KB

/0KB 102KB = 70KB + 32KB ERROR!!!

Dynamic Relocation Hardware Requirements

Hardware Requirements Notes

Privileged mode Needed to prevent user-mode processes
from executing privileged operations

Base/bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values

update base/bounds before letting a user program run
Privileged instruction(s) to register ~ OS must be able to tell hardware what

exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or out-of-bounds memory

OS Dynamic Relocation Requirements

OS Requirements Notes

Memory management Need to allocate memory for new processes;
Reclaim memory from terminated processes;
Generally manage memory via free list

*Base/bounds management Must set base/bounds properly upon context switch

Exception handling Code to run when exceptions arise;
likely action is to terminate offending process

*Base and bounds are not per process; they are hardware registers per
CPU. The OS needs to update the registers with the correct values in the
process control block (PCB) when switching processes

Dynamic Relocation with LDE

OS @ boot Hardware (No Program Yet)
(kernel mode)

initialize trap table
remember addresses of...
system call handler
timer handler
illegal mem-access handler
illegal instruction handler
start interrupt timer
start timer; interrupt after X ms
initialize process table
initialize free list

OS @ run
(kernel mode)

Hardware

Program
(user mode)

Example

The OS does not need to

get involved here as the

hardware can handle the —

address translation.
Efficient!

OS steps in when there
is an issues to resolve.

To start process A:
allocate entry
in process table
alloc memory for process
set base/bound registers

return-from-trap (into A)

—

~—

Handle timer
decide: stop A, run B
call switch () routine
save regs(A)
to proc-struct(A)
(including base/bounds)
restore regs(B)
from proc-struct(B)
(including base/bounds)
return-from-trap (into B)

Handle the trap
decide to kill process B
deallocate B’s memory
free B’s entry
in process table

restore registers of A
move to user mode
jump to A’s (initial) PC

translate virtual address
perform fetch

if explicit load /store:
ensure address is legal

translate virtual address

perform load/store

Timer interrupt
move to kernel mode
jump to handler

restore registers of B
move to user mode
jump to B’s PC

Load is out-of-bounds;
move to kernel mode
jump to trap handler

Process A runs
Fetch instruction

Execute instruction

(A runs...)

Process B runs
Execute bad load

Next Time...

* We aren’t making the best use of our limited
memory resources

* Internal fragmentation (space between stack and
heap) is wasted

* We don’t necessarily want all processes to be
the same size

e Can we do better...tune in and find out!

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)

Code

-

eap

'

(allocated but not in use)

T
Stack

(not in use)

Relocated Process

