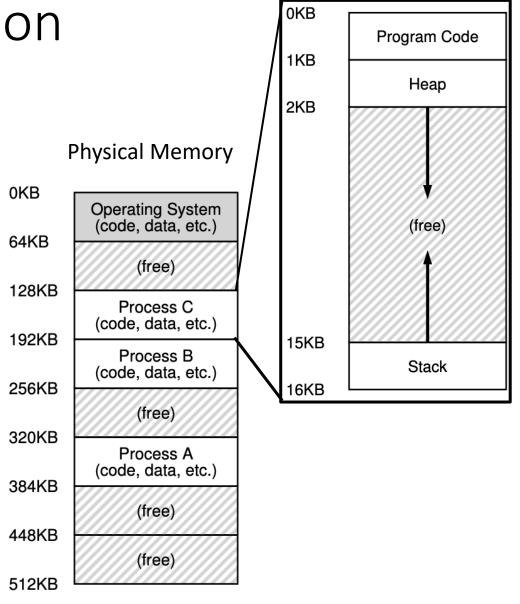
Address Spaces

Chapter 13

Background


- Initially the OS was just a set of libraries and primarily ran one process at a time
- Needs and technology changed, and the model was obsolete
 - Giving a process all of memory meant saving all of memory to disk on each swap
 - Secondary storage (disk) is orders of magnitude slower than memory!
- If only we could keep processes in memory....

0KB	Operating System (code, data, etc.)
64KB	
	Current Program (code, data, etc.)
max	

Address space

The Address Space Abstraction

- The OS virtualizes physical memory into partitions and assigns spaces for each process
- Each process gets its own address space
 - From the perspective of a process, this is "all" the memory on the system
 - Memory locations in a process's address space are virtual addresses
 - OS ensures that processes stay within their address space
 - Provides security for each process

Memory API Prelude

- Managing heap memory is not always easy
 - Heap memory can be requested manually
 - Sometimes functions provided by the C library will create heap memory for us and provide a pointer and size of the data
- Good news! There are tools that can help!
- Install valgrind to your VM (detects memory errors/leak detection)
 - sudo apt install valgrind