
Scheduling: Proportional Share
Chapter 9

Previously in CS212…
• We asked the question, “Can we find a compromise for good

turnaround time and response time with little (or no) information
about the lifetime/compute requirements of a process in advance (a
priori)?”

• Multi-Level Feedback Queue scheduler compromises between these
metrics using multiple queues of jobs with different priorities with an
“aging system” to slowly shift batch style jobs to a lower priority and
priority boosting to mitigate starvation

• But what if we wanted to emphasize fairness…

The Proportional Share Scheduler

• Also referred to as a fair-share scheduler

• Focuses on trying to ensure that each job obtains a certain
percentage of CPU time

• Approaches:
• Lottery Scheduling
• Stride Scheduling
• Completely Fair Scheduler (CFS)

Lottery Scheduling

• ”Tickets” are distributed to processes to indicate a share of a resource
• In our case, CPU time, but could be used for other resources as well

• Winning ticket numbers are chosen randomly by the scheduler

• Processes with more tickets are more likely to ”win” and receive CPU
time
• Effective light-weight approach that is probabilistically correct

Lottery Scheduling Example

• What is the likely-hood of running each job:
• A = 10%
• B = 20%
• C = 70%

• Scheduler picks: 99, 16, 80, 60, 13, 45, 6, 56, 76, 82, 40, 5, 27, 88, 7
• C, B, C, C, B, C, A, C, C, C, C, A, B, B, A

• What are the observed scheduling results?
• A = ~20%
• B = ~27%
• C = ~53%

Job Name Ticket #s
A 0 - 9

B 10 - 29

C 30 - 99

???

Ticket Mechanism – Ticket Currency

• The scheduler provides a set number of tickets to each job
• This represents a global currency

• However, a job can allocate tickets to its tasks and in arbitrary
numbers

• The scheduler will deal with scaling ticket distribution to the number
of tickets provided to that job in the global currency
• E.g., Job A has two tasks and 60 tickets globally, it can provide 50 and 100

tickets to each of its tasks, but the scheduler scales this to be 20 and 40 global
tickets in global currency for the tasks respectively

Ticket Mechanism – Ticket Transfer

• Sometimes a job does not need all the tickets it is provided

• Ticket transfer allows for a job to temporarily donate its tickets to
another job

• Can be useful when a job relies on the results another to help
maximize resource allocation to get the result faster

• Tickets are returned to the loaner after the job is complete

Ticket Mechanism – Ticket Inflation

• A process can temporarily increase or decrease the number of tickets
it has (global currency)

• Doesn’t require communication between processes like ticket transfer

• Only really works in a cooperative setting as a greedy process could
starve others

Lottery Scheduling Issues

• Requires many time
slices before ideal
”fairness” is reached

• How should we assign
tickets?

Stride Scheduling
• Attempt to reach a more optimal fairness outcome over shorter time

slices by limiting randomness to achieve correct time slice
proportions
• While we still assign tickets, we calculate a stride for each job by

taking is number of tickets and dividing it by a very large number

• As the processes run, we add their stride value to a counter
associated with the process (call the pass value)

• The scheduler always selects the job with the lowest pass value to run
• If there is a tie, one may be chosen randomly

Stride Scheduling Example

Completely Fair Scheduler (CFS)

• Keeps track of the amount of time a process has run on the CPU with
virtual time (vruntime)
• Picks the process with the lowest vruntime to run next
• Uses two control parameters:
• sched_latency – how long should a process run before considering a switch

• This value is divided by the number of jobs to determine slice time per job
• min_granularity – the smallest possible time slice for a process

• Utilizes a timer interrupt to frequently wake up and see if a switch is
necessary.

CFS Weights

• CFS supports priority scaling as well via a nice level

• Nice values range from -20 to +19 where positive values imply lower
priority

• A table of constants represents the weight to be applied to the
sched_latency (default is 1024)
• Weight proportion is calculated as the current job weight over the sum of

weights for all job

CFS and Weights Example

• Jobs A and B are in the system
• Assume a sched_latency of 48ms

• Job A is given a priority of -3 (1991) and B a priority of 0 (1024)

• What are the time slices:
• Time Slice for job A = (1991/ (1991+1024)) * 48 = 32ms
• Time Slice for job B = (1024 / (1991+1024)) * 48 = 16ms

Process Storage and Selection
• CFS does not use a list to store process in need

of scheduling
• Why?

• CFS uses a red-black tree which is like a binary
tree, but auto-balances itself to ensure optimal
performance
• Processes are order by vruntime

• The red-black tree only contains running or
ready (runnable) processes
• If a process was blocked, CFS will set its vruntime to

that of the minimum value in the tree when it
becomes ready again

