Limited Direct Execution

Chapter 6

Preface: Function Calls

main.c

{

extern int foo(int);

Int main(int ac, char** av)

save regs
pass args

y = foo(x); | call foo

restore regs

foo.c

int foo(int x)

> Inty; PROLOG
y=..,
._.return y; EPILOG
| S

Image from: https://www.embeddedrelated.com/showarticle/172.php

CPU Virtualization Mechanism

* To share the CPU, we need a way to:
* Run a process on the CPU

* Provide security for sensitive operations

* Switching between jobs

* Need a way to do this efficiently and maintain control over the system
* Requires both hardware and operating-system support

Direct Execution

OS Program
Create entry for process list

Allocate memory for program

Load program into memory

Set up stack with argc/argv

Clear registers

Execute call main()

Run main()

Execute return from main
Free memory of process
Remove from process list

* Any issues with this?

* We cannot swap a process out for another one unless it gives control back to
the OS and no support for privileged functionality

Operation Permissions

* Provide operation modes for the processor
e User mode — basic operations that require minimal privileges

* Kernel mode — full permission to all operations/resources provided by the OS
(the OS is also referred to as the kernel, thus the name)

* Attempting to run privileged instructions in user mode will cause and
exception

* We expose system calls to user mode so a request for the privileged
functionality can be performed by the OS

Executing System Calls: User -> Kernel

* At boot, the trap table is setup in hardware to initialized all the
functions to handle the system calls

* As part of a system call, a special instruction called a trap is executed
* User mode code only know what system call is needed, but NOT where the
system call code is located (Why?)

* The trap tells the hardware to:

 save the state/context of the current process to a kernel stack (we’ll need to
resume later)

* switch permission to kernel mode
* load up the appropriate code to handle the trap for the OS

Executing System Calls: Kernel -> User

* When the OS is done running the code to handle the system call it
executes a return-from-trap

* The return-from-trap tells the hardware to:
* Restore the state/context for the program that called the trap
* Switch back to user mode for instruction execution
* Resume the program after the trap using the Program Counter (PC)

Limited Direct Execution (LDE

OS @ boot
(kernel mode)

Hardware

initialize trap table

remember address of...

syscall handler
OS @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap
restore regs
(from kernel stack)
move to user mode
jump to main
Run main()
Call system call
trap into OS
save regs
(to kernel stack)

Handle trap
Do work of syscall
return-from-trap

Free memory of process
Remove from process list

move to kernel mode
jump to trap handler

restore regs

(from kernel stack)
move to user mode
jump to PC after trap

return from main
trap (via exit ())

CPU Virtualization Mechanism

* To share the CPU, we need a way to:

+Runaprocessonthe CRU
Drovid o £ . :

» Switching between jobs (controlling process execution)

* Need a way to do this efficiently and maintain control over the system
* Requires both hardware and operating-system support

Cooperative Approach

* The OS expects that all programs will behave correctly and respect
sharing of system resources

* Control is only transferred to the OS for system calls, illegal operations
(perhaps an error), a yield call to simply allow for another process to
take precedence

* Any issues with this?

* Not a perfect word, relies on the developer to make the program share, no
bugs like infinite loop.

Preemptive Approach (non-cooperative)

* A simple solution is to provide a timer device in hardware
* The timer is started during the OS boot process

e Each time a certain duration of time elapses (X milliseconds perhaps)
a timer interrupt occurs

* This interrupt causes a trap that returns control back to the OS

Context Switching

* The OS may not switch back to the same process
* a process has exited or must be terminated (e.g., segfault
e a process has made a blocking system call

e atimer interrupt occurs to give the CPU to another process (determined by
the scheduler)

* The OS executes context switch code to swap the two processes

» Context switch code saves state/context from the current process and
exchanges those values for a different ready process

Saving Context

* When moving from user to kernel mode process state/context is
saved to the kernel stack by the hardware during the trap instruction

* This is restored via return-from-trap

* During a context switch the hardware still saves process state/context
to the kernel stack but the OS also:

 Explicitly saves the state/context to the process table entry of the previously
running process and restores the state/context of a ready process

* Switches to the kernel stack of the ready process
e Returns from trap using the ready process

OS @ boot
(kernel mode)

LDE Timer Interrupt Context Switch

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms
OS @run Hardware Program
(kernel mode) (user mode)
Process A

Handle the trap

Call switch () routine
save regs(A) — proc_t(A)
restore regs(B) < proc_t(B)
switch to k-stack(B)

return-from-trap (into B)

timer interrupt

save regs(A) — k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) < k-stack(B)
move to user mode
jump to B’s PC
Process B

