
Limited Direct Execution
Chapter 6

Preface: Function Calls

Image from: https://www.embeddedrelated.com/showarticle/172.php

CPU Virtualization Mechanism

• To share the CPU, we need a way to:

• Run a process on the CPU

• Provide security for sensitive operations

• Switching between jobs

• Need a way to do this efficiently and maintain control over the system
• Requires both hardware and operating-system support

Direct Execution

• Any issues with this?
• We cannot swap a process out for another one unless it gives control back to

the OS and no support for privileged functionality

Operation Permissions

• Provide operation modes for the processor
• User mode – basic operations that require minimal privileges
• Kernel mode – full permission to all operations/resources provided by the OS

(the OS is also referred to as the kernel, thus the name)

• Attempting to run privileged instructions in user mode will cause and
exception

• We expose system calls to user mode so a request for the privileged
functionality can be performed by the OS

Executing System Calls: User -> Kernel

• At boot, the trap table is setup in hardware to initialized all the
functions to handle the system calls
• As part of a system call, a special instruction called a trap is executed
• User mode code only know what system call is needed, but NOT where the

system call code is located (Why?)

• The trap tells the hardware to:
• save the state/context of the current process to a kernel stack (we’ll need to

resume later)
• switch permission to kernel mode
• load up the appropriate code to handle the trap for the OS

Executing System Calls: Kernel -> User

• When the OS is done running the code to handle the system call it
executes a return-from-trap

• The return-from-trap tells the hardware to:
• Restore the state/context for the program that called the trap
• Switch back to user mode for instruction execution
• Resume the program after the trap using the Program Counter (PC)

Limited Direct Execution (LDE)

CPU Virtualization Mechanism

• To share the CPU, we need a way to:

• Run a process on the CPU

• Provide security for sensitive operations

• Switching between jobs (controlling process execution)

• Need a way to do this efficiently and maintain control over the system
• Requires both hardware and operating-system support

Cooperative Approach

• The OS expects that all programs will behave correctly and respect
sharing of system resources

• Control is only transferred to the OS for system calls, illegal operations
(perhaps an error), a yield call to simply allow for another process to
take precedence

• Any issues with this?
• Not a perfect word, relies on the developer to make the program share, no

bugs like infinite loop.

Preemptive Approach (non-cooperative)

• A simple solution is to provide a timer device in hardware

• The timer is started during the OS boot process

• Each time a certain duration of time elapses (X milliseconds perhaps)
a timer interrupt occurs

• This interrupt causes a trap that returns control back to the OS

Context Switching

• The OS may not switch back to the same process
• a process has exited or must be terminated (e.g., segfault
• a process has made a blocking system call
• a timer interrupt occurs to give the CPU to another process (determined by

the scheduler)

• The OS executes context switch code to swap the two processes

• Context switch code saves state/context from the current process and
exchanges those values for a different ready process

Saving Context

• When moving from user to kernel mode process state/context is
saved to the kernel stack by the hardware during the trap instruction
• This is restored via return-from-trap

• During a context switch the hardware still saves process state/context
to the kernel stack but the OS also:
• Explicitly saves the state/context to the process table entry of the previously

running process and restores the state/context of a ready process
• Switches to the kernel stack of the ready process
• Returns from trap using the ready process

LDE Timer Interrupt Context Switch

