
The Process

How can a computer run so many programs?

- We take this for granted daily
 - Do you think if your CPU is available to run a program?
- The OS ensures we don't have to worry about these things
 - The CPU resource is **virtualized**
 - Each program is isolated from each other which gives the illusion that program is only running program
- A running program exists as an abstraction called a process in memory

How does the OS setup a process?

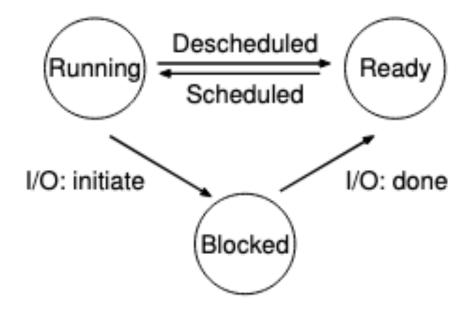
- OS allocates internal data structures
 - E.g. PID, process list entry
- OS allocates the program's address space
- Loads code and data from disk
- Creates runtime stack, heap, in the address space
- OS opens basic file descriptors for I/O
 - E.g. STDIN, STDOUT, STDERR
- OS initializes CPU registers

The Process List

- An internal data structure to keep track of all active processes
- Entries for each process are stored in a Process Control Block (PCB) or process descriptor
 - Process identifier
 - Process state
 - Pointers to other related processes (parent)
 - CPU context of the process (saved when the process is suspended)
 - Pointers to memory locations
 - Pointers to open files

Basic Process States

• Running


• CPU is actively executing program instructions

• Ready

 Process is ready to run on the CPU, but has not been selected to run

Blocked

- A process needs resources to run that have not yet been acquired so it yields to other processes until those resources are available
 - E.g I/O request

Running Processes on the CPU

- CPU resources are time-shared among the processes
- The OS has mechanisms (how?) to implement this, and a scheduling policy (why?) to make decisions on how timesharing occurs

Time	$\mathbf{Process}_0$	$\mathbf{Process}_1$	Notes
1	Running	Ready	
2	Running	Ready	
3	Running	Ready	Process ₀ initiates I/O
4	Blocked	Running	Process ₀ is blocked,
5	Blocked	Running	so Process ₁ runs
6	Blocked	Running	
7	Ready	Running	I/O done
8	Ready	Running	Process ₁ now done
9	Running	_	
10	Running	-	Process ₀ now done