
The Process



How can a computer run so many programs?

• We take this for granted daily
• Do you think if your CPU is available to run a program?

• The OS ensures we don’t have to worry about these things
• The CPU resource is virtualized
• Each program is isolated from each other which gives the illusion that 

program is only running program

• A running program exists as an abstraction called a process in 
memory



How does the OS setup a process?

• OS allocates internal data structures
• E.g. PID, process list entry

• OS allocates the program’s address 
space
• Loads code and data from disk
• Creates runtime stack, heap, in the 

address space
• OS opens basic file descriptors for I/O
• E.g. STDIN, STDOUT, STDERR

• OS initializes CPU registers



The Process List

• An internal data structure to keep track of all active processes
• Entries for each process are stored in a Process Control Block (PCB) or 

process descriptor
• Process identifier
• Process state
• Pointers to other related processes (parent)
• CPU context of the process (saved when the process is suspended)
• Pointers to memory locations
• Pointers to open files



Basic Process States

• Running
• CPU is actively executing program instructions

• Ready
• Process is ready to run on the CPU, but has not 

been selected to run

• Blocked
• A process needs resources to run that have not 

yet been acquired so it yields to other 
processes until those resources are available
• E.g I/O request



Running Processes on the CPU

• CPU resources are time-shared 
among the processes

• The OS has mechanisms (how?) 
to implement this, and a 
scheduling policy (why?) to 
make decisions on how time-
sharing occurs


