Storing Data with Computers

How We Use Numbers

Everything is a power of 10!

Example: 181

How We Use Numbers

Everything is a power of 10!

Example: 181

10 ³	10 ²	10 ¹	10 ⁰	
0	1	8	1	

How Computers Store Information

Everything is stored in *binary* as a series of 1's and 0's.

With only two values, this means everything is a power of two!

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1	0	1	1	0	1	0	1

$$128*1 + 64*0 + 32*1 + 16*1 + 8*0 + 4*1 + 2*0 + 1*1 = 181$$

Instructor: Drew Guarnera CS 102: Multimedia Computing

Storing Complex Data

Storing text and other more complex information requires an *encoding* format to describe the data in binary/numerical representation.

ASCII

Decimal	Character
65	А
66	В
67	С
68	D
69	Е
70	F
•••	•••

WAV Audio Format

Decimal	Character
65	Α
66	В
67	С
68	D
69	E
70	F

- Let's spell the word "ACE" in binary (all capital letters)
- First convert the letter to the decimal value
 - A = 65
- Now convert 65 to binary

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0

ASCII

Decimal	Character
65	Α
66	В
67	С
68	D
69	Е
70	F

- Let's spell the word "ACE" in binary
- First convert the letter to the decimal value
 - A = 65
- Now convert 65 to binary

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0

 $2^7 = 128$

That is far too large.

Leave it zero.

ASCII

Decimal	Character
65	Α
66	В
67	С
68	D
69	Е
70	F

- Let's spell the word "ACE" in binary
- First convert the letter to the decimal value
 - A = 65
- Now convert 65 to binary

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	0	0

$$2^6 = 64$$

That is less than or equal to 65.

Let's mark this with a 1.

ASCII

Decimal	Character
65	Α
66	В
67	С
68	D
69	Е
70	F

- Let's spell the word "ACE" in binary
- First convert the letter to the decimal value
 - A = 65
- Now convert 65 to binary

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	0	1

All we need now is a 1 (65 – 64 = 1). Let's mark the 2^0 position with a 1.

Decimal	Character
65	Α
66	В
67	С
68	D
69	Е
70	F

- Let's spell the word "ACE" in binary
- First convert the letter to the decimal value
 - A = 65
- Now convert 65 to binary

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	0	1

$$2^{7}(0) + 2^{6}(1) + 2^{5}(0) + 2^{4}(0) + 2^{3}(0) + 2^{2}(0) + 2^{1}(0) + 2^{0}(1) = 65$$

You Try!

Decimal	Character
65	Α
66	В
67	С
68	D
69	E
70	F

- A = 65 = 01000001
- Try to convert capital C and E to binary on your own!

You Try!

Decimal	Character
65	Α
66	В
67	С
68	D
69	Е
70	F

- A = 65 = 01000001
- Try to convert capital C and E to binary on your own!

$$C = 67$$

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	1	1

$$2^{7}(0) + 2^{6}(1) + 2^{5}(0) + 2^{4}(0) + 2^{3}(0) + 2^{2}(0) + 2^{1}(1) + 2^{0}(1) = 67$$

$$E = 69$$

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	1	0	1

$$2^{7}(0) + 2^{6}(1) + 2^{5}(0) + 2^{4}(0) + 2^{3}(0) + 2^{2}(1) + 2^{1}(0) + 2^{0}(1) = 69$$

Floating Point Numbers

- Floating point numbers are more complicated to store
- The Institute of Electrical and Electronics Engineers (IEEE) have created an encoding format for representing these values
 - The standard is called IEEE 754
 - YOU DO NOT NEED TO KNOW HOW TO DO THIS CONVERSION ©
- It is not possible to represent all floating-point numbers
 - WHY?
 - The number of possible values between 0 and 1 is infinite and computers have finite storage!

Hexadecimal

- Binary numbers can get quite long
 - Even simple things like integers could use up to 64 bits!
- When binary numbers are presented to people, they often take the form of hexadecimal values as we can represent the same data an abbreviated fashion

- You may have already seen hexadecimal values before as they are very common for the use of color on the web
 - This is red: FF0000

Representing Binary as Hexadecimal Values

- Hexadecimal numbers use the values 0-9 and A-F
 - 0-9 represent the numbers 0-9 (0000 1001)
 - A-F represent the numbers 10-15 (1010 1111)
 - 16 possible values means we now are dealing in powers of 16
- Each hexadecimal represents a group of four binary digits
 - Ex. 01 1001 1111 or 0001 1001 1111
- We can convert the groups of four to hexadecimal digits and combine them
 - 0001 = 1
 - 1001 = 9
 - 1111 = F (15)

Binary Hexadecimal

0b01 1001 1111 => 0x19F

NOTE: The 0b and 0x prefixes just distinguish binary and hexadecimal format respectively

Try it yourself!

- Convert decimal 635 to binary
 - 0b1001111011

- Convert decimal 635 to hexadecimal
 - 0b<mark>1001111011</mark> = 0x<mark>27B</mark>
- Convert hexadecimal 0x7C to decimal
 - $7(16^1) + 12(16^0) = 124$