
Reference – LearnCPP.com – has many
excellent C++ tutorials

The auto keyword

In C++11, the meaning of the auto keyword has
changed, and it is now a useful declaration feature.

Consider:

double d = 5.0;

If C++ knows 5.0 is a double literal, why do we
have to explicitly specify that d is actually a
double? Sounds like Python doesn’t it?

Starting with C++11, the auto keyword does just
that.

When initializing a variable, the auto keyword can
be used in place of the variable type to tell the
compiler to infer the variable’s type from the
initializer’s type.

This is called automatic type deduction.

For example:

1
2
3
4

auto d = 5.0; // 5.0 is a double literal, so it
is type double
auto i = 1 + 2; // 1 + 2 evaluates to an
integer, so it is int

This even works with the return values from
functions:

1
2
3
4
5
6
7
8
9
10

int add(int x, int y)
{
 return x + y;
}

int main()
{
 auto sum = add(5, 6);
 return 0;
}

Note that this only works when initializing a
variable upon creation.

Using auto in place of fundamental data types only
saves a few keystrokes, but where the types get
complex and lengthy, using auto can be very nice.

The auto keyword can’t be used with function
parameters

Many programmers new to using auto try
something like this:

1
2
3
4
5
6

void mySwap(auto &x, auto &y)
{
 auto z = x;
 x = y;
 y = z;
}

This won’t work, because the compiler can’t infer
types for function parameters x and y at compile
time.

Use function templates, not automatic type
deduction, in this case. The exception to this is in
C++14 for lambda expressions, which is an
advanced C++ topic.

Automatic type deduction for functions in
C++14

In C++14, the auto keyword was extended to be
able to auto-deduce a function’s return type.
Consider:

1
2
3
4

auto add(int x, int y)
{
 return x + y;
}

Since x + y evaluates to an integer, the compiler
will deduce this function should have a return type
of int.

While this may seem neat, this syntax should be
avoided for functions.

The return type of a function helps to document for
the caller what a function is expected to return.

A good rule of thumb is that auto is okay to use
when defining a variable, because the type of the
variable is to the right side of the statement.

However, with functions, that is not the case --
there’s no context to help indicate what type the
function returns. A user would actually have to dig
into the function body itself to determine what
type the function returned. It’s much less intuitive,
and therefore more error prone.

Trailing return type syntax in C++11

C++11 also added the ability to use a trailing
return syntax, where the return type is specified
after the rest of the function prototype.

Consider the following function declaration:

 int add(int x, int y);

In C++11, this could be equivalently written as:

 auto add(int x, int y) -> int;

In this case, auto does not perform automatic type
deduction -- it is just part of the syntax to use a
trailing return type.

Why would you want to use this?

One nice thing is that it makes all of your function
names line up:

1
2
3
4

auto add(int x, int y) -> int;
auto divide(double x, double y) -> double;
auto printSomething() -> void;
auto calculateThis(int x, double d) -> string;

But it is of more use when combined with some
advanced C++ features, such as classes and the
decltype keyword.

For now, we recommend the continued use of the
traditional function return syntax.

Summary

Starting with C++11, the auto keyword can be
used in place of a variable’s type when doing an
initialization in order to perform automatic type
deduction.

Other uses of the auto keyword should generally
be avoided.

For Each Loops

C++11 introduces a new type of loop called a for-
each loop (also called a range-based for loop)
that provides a simpler and safer method for cases
where we want to iterate through every element in
an array (or other list-type structure).

For each loop examples

The for each statement has a syntax that looks like
this:

for (element_declaration : array)
statement;

When this statement is encountered, the loop
iterates through each element in array, assigning
the value of the current array element to the
variable declared in element_declaration.

For best results, element_declaration should have
the same type as the array elements, otherwise
type conversion occurs.

Here is a simple example that uses a for-each loop
to print all of the elements in an array named fib:

1
2
3
4
5
6
7
8
9
10

#include <iostream>

int main()
{
 int fib[] = {1,1,2,3,5,8,13,21,34,55,89};
 for (int number : fib)
 cout << number << ' ';

 return 0;
}

This prints:

1 1 2 3 5 8 13 21 34 55 89

Let’s take a closer look at how this works. First,
the for loop executes, and variable number is set
to the value of the first element, which has value
1. The program executes the statement, which
prints 1. And so on.

Note that variable number is not an array index.
It’s assigned the value of the array element for the
current loop iteration.

For each loops and the auto keyword

Because element_declaration should have the
same type as the array elements, this is an ideal
case in which to use the auto keyword, and let
C++ deduce the type of the array elements.

Here’s the above example, using auto:

1
2
3
4
5
6
7
8
9
10

#include <iostream>

int main()
{
 int fib[] = {1,1,2,3,5,8,13,21,34,55,89};
 for (auto number : fib)
 cout << number << ' ';

 return 0;
}

For each loops and references

In the for-each examples above, the element
declarations are declared by value:

1
2
3

int array[5] = { 9, 7, 5, 3, 1 };
for (auto element: array)
 cout << element << ' ';

This means each array element is copied into
variable element.

Copying array elements can be expensive. We can
use references when a copy is not needed:

1
2
3

int array[5] = { 9, 7, 5, 3, 1 };
for (auto &element: array)
 cout << element << ' ';

In the above example, element will be a reference
to the currently iterated array element, avoiding
having to make a copy.

Also any changes to element affects the array,
something not possible if element is a normal
variable.

And, of course, it’s a good idea to make your
element const if you’re intending to use it in a
read-only fashion:

1
2
3

int array[5] = { 9, 7, 5, 3, 1 };
for (const auto &element: array)
 cout << element << ' ';

Rule: Use references or const references for your
element declaration in for each loops for
performance reasons.

Activity - Rewrite the following max scores
example using auto and a for each loop

Rewrite this example using a for each loop:

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <iostream>
using namespace std;
int main()
{
 const int numStudents = 5;
 int scores[numStudents] = {84,92,76,81,56};
 int maxScore = 0; //largest score
 for (int student = 0; student < numStudents;
++student)
 if (scores[student] > maxScore)
 maxScore = scores[student];
 cout << "Max score was " << maxScore << endl;
 return 0;
}

For each loops and non-arrays

For each loops work with many kinds of list-like
structures, such as vectors (e.g. std::vector),
linked lists, trees, and maps.

1
2
3
4
5
6
7
8
9
10
11

#include <vector>
#include <iostream>
using namespace std;
int main()
{
 vector<int> fib = {1,1,2,3,5,8,13,21,34};
 for (const auto &number : fib)
 cout << number << ' ';

 return 0;
}

For each doesn’t work with pointers to an
array

In order to iterate through the array, for-each
needs to know how big the array is, which means
knowing the array size. Because arrays that have
decayed into a pointer do not know their size, for
each loops do not work with them!

1
2
3
4
5
6
7
8

#include <iostream>

int sumArray(int array[])
{
 int sum = 0;
 for (const auto &number : array) // compile
 error, the size of array isn't known
 ……

Can I get the index of the current element?

For each loops do not provide a direct way to get
the array index of the current element. This is
because many of the structures that for each loops
can be used with (such as linked lists) are not
directly indexable!

Conclusion

For-each loops provide a superior syntax for
iterating through an array when we need to access
all of the array elements in forwards sequential
order.

It should be preferred over the standard for loop in
the cases where it can be used. To prevent making
copies of each element, the element declaration
should ideally be a reference.

Note that because for each was added in C++11, it
won’t work with older compilers.

Quiz

This one should be easy.

1) Declare a fixed array with the following names:
Alex, Betty, Caroline, Dave, Emily, Fred, Greg, and
Holly. Ask the user to enter a name. Use a for
each loop to see if the name the user entered is in
the array.

Sample output:

Enter a name: Betty Betty was found.
Enter a name: Megatron Megatron was not
found.

Hint: Use string as your array type.

For_each loops

Parameters first, last
Input iterators to the initial and final positions in a
sequence. The range used is [first,last), which
contains all the elements between first and last,
including the element pointed to by first but not
the element pointed to by last.
Parameter fn
Unary function that accepts an element in the
range as argument.This is usually a function
pointer. Its return value, if any, is ignored.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

void myfunction (int i) {
 cout << ' ' << i; }

int main () {
 vector<int> myvector;

myvector.push_back(10);
myvector.push_back(20);
myvector.push_back(30);
cout << "myvector contains:";
for_each(myvector.begin(),myvector.end(),
myfunction);

return 0; }

Using this in our HashTable class.

void printString (string s) {
 cout << ' ' << s << "\t";
}

ostream & operator << (ostream &out, const
HashTable & H) {
 for (auto i = 0; i < SIZE; i++) {
 auto temp = H.table[i];
 cout << "Index " << i << " : ";
 for_each (temp.begin(), temp.end(),
 printString);
 cout << endl;
 }
 return out;
}

Better yet, after checking syntax:

ostream & operator << (ostream &out, const
HashTable & H) {
 for (auto const & temp: H.table) {
 auto i = 0;
 cout << "Index " << i++ << " : ";
 for_each (temp.begin(),temp.end(),

printString);
 cout << endl;
 }
 return out;

}

