Use of Virtual Keyword and Abstract Classes

The Virtual keyword allows a member function of a parent (base) class to be over-ridden in its child (derived) classes.

#include <iostream>
using namespace std;

class Car // Base class {
public:
	virtual void Create() //virtual function	{
		cout << "Parent class: Car\n";}
};

class Sedan: public Car {
public:
	void Create() {
		cout << "Derived class: Sedan - Overridden function";}
};

int main() {
	Car *x = new Car(),*y = new Sedan();
	x->Create();
	y->Create();
	delete x;
	delete y;
}
This produces the result of:

Parent class: Car
Derived class: Sedan - Overridden function
Abstract Methods and Abstract Classes

C++ also allows a class to be defined for specification only. Below we see several methods terminated with = 0; These are called abstract methods – no implementation, and the class is called an abtract class – we cannot create objects of the class and a derived class must supply an implementation instead.

class Vehicle
{
 public:
 virtual void Start() = 0;
 virtual void Stop() = 0; 	virtual void Accelerate(float 			acc) = 0;
 virtual float get_Speed() 				{return speed;}
 private:
	 float speed;
};

class Car : public Vehicle
{
 public:
 void Start(){
 speed = 0.0;
	 cout << "You properly started 		this car!";
 }
 //Something like this for the other functions.
 ...
};

class Airplane : public Vehicle
{
 public:
 void Start(){
 speed = 5.0;
		cout << "You properly started 			this airplane! You rock.";
 }
 ...
};

class Helicopter : public Vehicle
{
 public:
 void Start(){
 speed = 20.5;
		cout << "You properly started 			this helicopter. Is there 				anything you can't do??";
 }
 	...
}

/*Declare an array of ... what? Cars? No. Airplanes?? No!! Vehicles!! */

[bookmark: _GoBack]Vehicle[] myGarageVehicles = { new Car(), new Airplane(), new Airplane(), new Car(), new Helicopter(), new Helicopter() };

Without the base Vehicle class, it would not be possible to group garage contents into a single array. This grouping of different types (but related by inheritance) is referred to as polymorphism. Here we have a data structure (array) that holds different vehicle types, cool!

Now, let's drive all of them:

void TestDriveThis(Vehicle *vehicle)
{
 vehicle->Start();

 float targetSpeed = 150;
 while (vehicle->get_Speed() < 				targetSpeed)
 {
 vehicle->Accelerate();
 cout << “Pedal to the metal\n”;
 }
 //You reach the target speed
 vehicle->Stop();
}

...
int main()
{
 for(int i = 0; i < 6; i++)
 {
 TestDriveThis(myVehicles[i]);
 }
 return 0;
}

