Programming Paradigms – different styles of computational problem solving using a programming language.

Define imperative programming paradigm?

 Imperative programming is a paradigm of computer programming in which the program describes a sequence of steps that change the state of the computer. Programs written this way often compile to binary executables that run more efficiently since all CPU instructions are themselves imperative statements. The first imperative languages had no loops or functions and used gotos to accomplish non-sequential statement execution. A must read for all computer scientists is Edgar Dijkstra: Go To Statement Considered Harmful. Dijkstra also coined the term “Structured Programming” for programs with no gotos and the use of control constructs that are single entry/exit.

if (num % 2 == 0)
 goto even; // jump to even
else
 goto odd; // jump to odd
[bookmark: _GoBack]
even:
 cout << num << " is even \n";
 goto next;
odd:
 cout << num << " is odd \n";
}
next:

Define structural programming paradigm?

Structured programming is a programming paradigm aimed at improving the clarity, quality, and development time of a computer program by making extensive use of the structured control flow constructs of selection (if/then/else) and repetition (while and for), block structures, and subroutines in contrast to using simple tests and jumps such as the go to statement, which can lead to "spaghetti code" that is potentially difficult to follow and maintain. Böhm, C.; Jacopini, G. "Flow diagrams, Turing machines and languages with only two formation rules".

Define procedural programming paradigm?

Procedural programming is a programming paradigm, derived from structured programming, based upon the concept of the procedure call.

Define object-oriented programming paradigm?

Object-oriented programming (OOP) is a programming paradigm based upon objects (having both data and methods) that aims to incorporate the advantages of modularity and reusability. Objects, which are usually instances of classes, are used to interact with one another to design applications and computer programs. Alan Kay is regarded as the father of OOP.

This semester we learn C++, which is an imperative, structured, procedural, and object-oriented programming language.

C++

What is a class?

A class is a blueprint or prototype that defines the variables (data fields or state) and the functions (methods or behaviors) common to all objects of a certain kind.

What is an object?

An object is an instance of a class. Objects are often used to model real-world objects you find in everyday life.

Simple class example (what’s up with public and private?)

class Rectangle {
 public:
	void set_values (int,int); //methods (behaviors of class)
	int area (void);
 private:
	int width, height; //data fields (variables of class)
}

Creating some objects of class Rectangle

Rectangle myRectangle1, myRectangle2;

Sending messages to the objects (This is how computation is accomplished)

myRectangle1.set_values (5, 20);
myRectangle2.set_values (100, 7);

cout << “The area of rectangle 1 is “ << myRectangle1.area();
cout << “The area of rectangle 2 is “ << myRectangle2.area();

Putting this simple example together in a C++ program
The class definition goes in a C++ header file – Rectangle.h

/* Rectangle.h
 * Class definition for Rectangle class
 *
 * set_values initializes the width and height of the
 * rectangle
 * area returns the current area of the rectangle
 *
 * created by : D. Byrnes
 * creation date : 8/24/18
 */

#ifndef Rectangle_h
#define Rectangle_h

class Rectangle {
public:
 void set_values (int,int);
 int area ();
private:
 int width, height;

};
#endif

The class implementation goes in a C++ implementation file – Rectangle.cpp. What’s up with the ::? This is called the scope resolution operator.

/* Rectangle.cpp
 * Class implementation for Rectangle class
 *
 * set_values initializes the width and height of the rectangle
 * area returns the current area of the rectangle
 *
 * created by : D. Byrnes
 * creation date : 8/24/18
 */
#include "Rectangle.h"

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int Rectangle :: area()
{
 return width * height;
}

Using the class in a main.cpp file (what’s up with using namespace std?).

//
// main.cpp
// Using the Rectangle class
//
// Created by Denise Byrnes on 8/24/18.
// Copyright © 2018 Denise Byrnes. All rights reserved.
//

#include <iostream>
#include "Rectangle.h"

using namespace std;

int main ()
{
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area() << endl;
 return 0;
}

AR —————
i

e et g s

e rogmmg o ot s s
%ﬁm-—'ﬂ ..:'Z_'.T.'{ e s
g b e e e o b
e e e e s o S P
e i ol e e e s e

[————

B —
b o e g i
e o el e e
ke e et g e el
e o s e ol - el o
i B e o S Tt s
e ity s e

[IOS——

Pt i s s . e s
T
e dcnendeogammivg s

Ot e prsrmmin 00P) g bt
o e e oo e o
i ey, Ot ey At e et

