MONTE CARLO

 $A = \pi \Gamma^2$

In a <u>unit circle</u>, r=1. So, $A=\pi$.

Let's focus on one quadrant

How to approximate area?

- Randomly pick a point p=(x,y) in the quadrant 0 = x = 1
- · Approximate area of 4 of circle is:

of all points

A point p=(x,y) is in the circle of the distance to (0,0) is ± 1 A point p=(x,y) is outside the circle of the distance to (0,0) is >1

Recall Euclidean distance between points $\rho_1 = (x_1, y_1)$ and $\rho_2 = (x_2, y_2)$ is defined as: $-\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

To compute distance to the <u>origin</u>, where $p_2=(0,0)$, we have: $-\sqrt{\chi_1^2+{\gamma_1}^2}$