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Genetic algorithm (GA)
• J. Holland, U. Michigan (60’s) à develop computers 

that could adapt to any environment using biological 
evolution as example

• = search space H (large!) to find a best (good) h à
“population” of hypotheses h that “evolves” according 
to a “survival of the fittest” technique 

• “best” = optimizes a fitness function (e.g. accuracy in 
classification using h)

• Not guaranteed to find optimal solution

• Analogy to biological evolution



Components in GA
• Size of population to be maintained (how many h)

• Fitness function

• Threshold to indicate acceptable fitness level (to 
terminate the algorithm)

• Parameters to compute next generation:
– Fraction of population replaced at each generation
– Mutation type and rate



Algorithm
Example:

• p = 8 (no. of h in population)

• r = ½ (fraction of p to be replaced by 
crossover)

• m = 1/8 (mutation rate)

• 2. Crossover: from 2 pairs of h obtain 
through crossover 4 offspring

– è Population = 4 best fit h + 4 
crossover children

• 3. Mutate: randomly select 1/8 of 
population; for each invert one 
randomly selected bit   

• OBS. Probability that h is selected is 
proportional to its own fitness!

• GOAL: breed a population of high 
fitness h



Representing hypotheses
• By bit strings

• E.g. if rule as bit string
– Assume:

• attr. Wind can take 2 values è 2 bits: 10, 01, 11, 00
• attr. Outlook can take 3 values è 3 bits: 100, 111, …

– IF (Outlook = overcast OR rain) AND (Wind=strong) 
then Play=yes

• èh1 = <011  10  1>
– IF (Wind=strong) then Play=no

• èh2 = <111  10  0>

• Critical issue in using successfully GA



Operators for GA



Crossover and mutation
• Crossover

– Produces two offspring from 2 parents by copying 
selected bits from each parent

• Mutation
– Flips a bit 
– Produces one offspring from a single parent
– Usually used after crossover
– Rare in nature! è rate of mutation in GA: 0.01 - 0.001
– Often has harmful results
– Still, can spin you out of a local minima



Selecting most fit h
• Roulette wheel selection

– è may lead to crowding 
• = highly fit individuals quickly reproduce è very similar 

individuals take over a large fraction of population 
• Reduces diversity

• Other selection methods
– Tournament selection

• Pick h1, h2 randomly
• With probability Pr(h) (from above) select most fit

– Fitness sharing 
• Fitness measure of an individual is reduced by presence of 

other similar individuals in population



GA for concept learning - Example
• GABIL (GA Batch Learning) system – DeJong(‘93)

– r=0.6, m=0.001, p=100 …1000
– Two-point crossover
– Representation: bit-string repres. of individual rules are 

concatenated

• Learn Boolean concepts represented by  a disjunction of 
rules (e.g. breast cancer diagnosis)

• Results comparable to C4.5 (~91% accuracy)



Crossover with variable length 
bitstrings



Schema theorem
• Characterizes evolution of population in terms of the no. of instances 

representing each schema

• Schema = string of 0,1,* (don’t care)
– Schema: 0**1* 
– Instance of above schema: 00110, 01111, …

• è characterize population by no. of instances representing each 
possible schema

• m(s,t) = no. of instances of schema s in pop. at time t

• Obs. An individual may belong to (represent) several schemas

• Evolution of a schema depends on
– Selection
– Crossover
– Mutation



Selection step analysis
• Expected number of 

instances of schema s at 
t+1
– Proportional to avg. 

fitness of instances of 
s at t

– Inversely proportional 
to the avg. fitness of all 
population p at t

• è schemas with above 
average fitness will be 
represented in next 
generation with 
increasing frequency 



Schema theorem
• Lower bound on 

expected frequency of 
schema s (considering 
selection, crossover, 
and mutation steps)

• è More fit schemas will 
grow in influence, 
especially schemas 
having many *

Effect of selection Effect of 1-pt. crossover 
Effect of mutation



Obs. on GA 
• Bit string encoding (and evaluation function design) à critical!!!!!

• Not necessary binary strings à may use characters from an alphabet

• Easy to implement

• Requires no complex math tools (e.g. derivatives in NN)

• Only changes from problem to problem
– Evaluation function
– Number of bits in string

• Not guaranteed to find optimal solution

• “second best way” to solve a problem

• Applied in optimization problems
– Circuit layout
– Choosing net topology of a NN
– TSP



Why GA works - schemas

• Use schema to characterize the evolution


