Ch9. Genetic algorithms
9.1-94

S. Visa

Genetic algorithm (GA)

J. Holland, U. Michigan (60’ s) - develop computers
that could adapt to any environment using biological
evolution as example

= search space H (large!) to find a best (good) h >
populatlon of hypotheses h that “evolves” according
to a “survival of the fittest” technique

“best” = optimizes a fitness function (e.g. accuracy in
classification using h)

Not guaranteed to find optimal solution

Analogy to biological evolution

Components in GA

Size of population to be maintained (how many h)
Fitness function

Threshold to indicate acceptable fithess level (to
terminate the algorithm)

Parameters to compute next generation:

— Fraction of population replaced at each generation
— Mutation type and rate

Algorithm

GA(Fitness, Fitness_threshold,p,r,m)

e Initialize: P < p random hypotheses

e Fvaluate: for each h in P, compute Fitness(h)
e While [max), Fitness(h)] < Fitness_threshold
1.

Select: Probabilistically select (1 —7)p
members of P to add to Ps.

Fitness(h;)

Pr(h;) = '
r(h;) wi_y Fitness(h;)

. Crossover: Probabilistically select =¥ pairs of
hypotheses from P. For each pair, (hq, hs),

produce two offspring by applying the

Crossover operator. Add all offspring to P;.
. Mutate: Invert a randomly selected bit in

m - p random members of P,
Update: P + P,

. Evaluate: for each h in P, compute

Fitness(h)

e Return the hypothesis from P that has the
highest fitness.

Example:
p = 8 (no. of h in population)

r = %2 (fraction of p to be replaced by
crossover)

m = 1/8 (mutation rate)

2. Crossover: from 2 pairs of h obtain
through crossover 4 offspring

— =>» Population =4 best fith + 4
crossover children

3. Mutate: randomly select 1/8 of
population; for each invert one
randomly selected bit

OBS. Probability that h is selected is
proportional to its own fitness!

GOAL.: breed a population of high
fitness h

Representing hypotheses
* By bit strings

* E.g. if rule as bit string

— Assume:
« attr. Wind can take 2 values = 2 bits: 10, 01, 11, 00
« attr. Outlook can take 3 values = 3 bits: 100, 111, ...
— |IF (Outlook = overcast OR rain) AND (Wind=strong)
then Play=yes
« 2h1=<011 10 1>

— IF (Wind=strong) then Play=no
- 2h2=<111 10 0>

* Critical issue in using successfully GA

Operators for GA

Single-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation:

Initial strings Crossover Mask
11101001000

— . 11111000000
00001010101 N
11101001000

\\\\ 00111110000 j/Jf
Sa

\

00001010101

111010010

\ 10011010011 /
00001010101 / \

11101001000 -

Offspring

11101010101

00001001000

11001011000

00101000101

10001000100

01101011001

11101011000

Crossover and mutation

« Crossover

— Produces two offspring from 2 parents by copying
selected bits from each parent

* Mutation
— Flips a bit
— Produces one offspring from a single parent
— Usually used after crossover
— Rare in nature! =» rate of mutation in GA: 0.01 - 0.001
— Often has harmful results
— Still, can spin you out of a local minima

Selecting most fit h

Fitness(h;)
w1 Fitness(h;)

* Roulette wheel selection rr(n;) =

— =» may lead to crowding

« = highly fit individuals quickly reproduce = very similar
individuals take over a large fraction of population

« Reduces diversity

 Other selection methods

— Tournament selection

* Pick h1, h2 randomly

« With probability Pr(h) (from above) select most fit
— Fitness sharing

« Fitness measure of an individual is reduced by presence of
other similar individuals in population

GA for concept learning - Example

« GABIL (GA Batch Learning) system — DedJong(‘93)
— r=0.6, m=0.001, p=100 ...1000
— Two-point crossover

— Representation: bit-string repres. of individual rules are
concatenated

IF a1 =1Nays = F THEN ¢=1T; IF ays =1 THEN ¢c = F
represented by

ap as C apy as ¢C
10 01 1 11 10 O

« Learn Boolean concepts represented by a disjunction of
rules (e.g. breast cancer diagnosis)

* Results comparable to C4.5 (~91% accuracy)

Crossover with variable length
bitstrings

Start with

ap as C¢C ap as cC

hlz[jr) 011 11 00D

—

ho : (ﬁ[:JI 0 10 01 0

1. choose crossover points for hi, e.g., after bits 1, 8

2. now restrict points in hs to those that produce
bitstrings with well-defined semantics, e.g.,

(1,3), (1,8), {6,8).
if we choose (1, 3), result is

ap dads C

hs: 11 10 0
ap as cC ap dads C ap das C
hy,: 0001 1 11 11 0 10 01 O

Schema theorem

Characterizes evolution of population in terms of the no. of instances
representing each schema

Schema = string of 0,1,* (don’ t care)
— Schema: 0**1*
— Instance of above schema: 00110, 01111, ...

=» characterize population by no. of instances representing each
possible schema

m(s,t) = no. of instances of schema s in pop. at time t
Obs. An individual may belong to (represent) several schemas

Evolution of a schema depends on
— Selection

— Crossover

— Mutation

Selection step analysis

e f(t) = average fitness of pop. at time ¢ - Expected number of
e m(s,t) = instances of schema s in pop at time ¢ in?tances of schema s at
+
e i(s,t) = ave. fitness of instances of s at time ¢ .
— Proportional to avg.
Probability of selecting A in one selection step fitness of instances of
h
Pr(h) — .f() s att |
wiy f(hi) — Inversely proportional
_ fh) to the avg. fitness of all
nf(t) population p at t
Probabilty of selecting an instance of s in one step
Pr(hes) = X f(h) 4 schem_as with gbove
nestp (1) average fitness will be
_ s, t)m(s,t) represented in next
nf(t) generation with
Expected number of instances of s after n selections increasing frequency

f&(_s, t)
f(t)

Elm(s,t+1)] = m(s,t)

Schema theorem

Effect of 1-pt. crossover

’f{,(Sjt) d() Effect of mutation
Blim(s.t+1)] 2 “5idm(s.0) (1= pyg | (1=p) ™

m(s,t) = instances of schema s in pop at time ¢

Effect of selection

[—1

t‘"h |

(t) = average fitness of pop. at time ¢
(t) = ave. fitness of instances of s at time ¢

e p. = probability of single point crossover
operator

e p,, = probability of mutation operator
e [= length of single bit strings
e 0(s) number of defined (non “*”) bits in s

e d(s) = distance between leftmost, rightmost
defined bits in s

Lower bound on
expected frequency of
schema s (considering
selection, crossover,
and mutation steps)

=>» More fit schemas will
grow in influence,
especially schemas
having many *

Obs. on GA

Not necessary binary strings - may use characters from an alphabet

Easy to implement
Requires no complex math tools (e.g. derivatives in NN)

Only changes from problem to problem
— Evaluation function
— Number of bits in string

Not guaranteed to find optimal solution

“second best way” to solve a problem

Applied in optimization problems
— Circuit layout
— Choosing net topology of a NN
— TSP

Why GA works - schemas

« Use schema to characterize the evolution

