
Ch9. Genetic algorithms
9.1 - 9.4

S. Visa

Genetic algorithm (GA)
• J. Holland, U. Michigan (60’s) à develop computers

that could adapt to any environment using biological
evolution as example

• = search space H (large!) to find a best (good) h à
“population” of hypotheses h that “evolves” according
to a “survival of the fittest” technique

• “best” = optimizes a fitness function (e.g. accuracy in
classification using h)

• Not guaranteed to find optimal solution

• Analogy to biological evolution

Components in GA
• Size of population to be maintained (how many h)

• Fitness function

• Threshold to indicate acceptable fitness level (to
terminate the algorithm)

• Parameters to compute next generation:
– Fraction of population replaced at each generation
– Mutation type and rate

Algorithm
Example:

• p = 8 (no. of h in population)

• r = ½ (fraction of p to be replaced by
crossover)

• m = 1/8 (mutation rate)

• 2. Crossover: from 2 pairs of h obtain
through crossover 4 offspring

– è Population = 4 best fit h + 4
crossover children

• 3. Mutate: randomly select 1/8 of
population; for each invert one
randomly selected bit

• OBS. Probability that h is selected is
proportional to its own fitness!

• GOAL: breed a population of high
fitness h

Representing hypotheses
• By bit strings

• E.g. if rule as bit string
– Assume:

• attr. Wind can take 2 values è 2 bits: 10, 01, 11, 00
• attr. Outlook can take 3 values è 3 bits: 100, 111, …

– IF (Outlook = overcast OR rain) AND (Wind=strong)
then Play=yes

• èh1 = <011 10 1>
– IF (Wind=strong) then Play=no

• èh2 = <111 10 0>

• Critical issue in using successfully GA

Operators for GA

Crossover and mutation
• Crossover

– Produces two offspring from 2 parents by copying
selected bits from each parent

• Mutation
– Flips a bit
– Produces one offspring from a single parent
– Usually used after crossover
– Rare in nature! è rate of mutation in GA: 0.01 - 0.001
– Often has harmful results
– Still, can spin you out of a local minima

Selecting most fit h
• Roulette wheel selection

– è may lead to crowding
• = highly fit individuals quickly reproduce è very similar

individuals take over a large fraction of population
• Reduces diversity

• Other selection methods
– Tournament selection

• Pick h1, h2 randomly
• With probability Pr(h) (from above) select most fit

– Fitness sharing
• Fitness measure of an individual is reduced by presence of

other similar individuals in population

GA for concept learning - Example
• GABIL (GA Batch Learning) system – DeJong(‘93)

– r=0.6, m=0.001, p=100 …1000
– Two-point crossover
– Representation: bit-string repres. of individual rules are

concatenated

• Learn Boolean concepts represented by a disjunction of
rules (e.g. breast cancer diagnosis)

• Results comparable to C4.5 (~91% accuracy)

Crossover with variable length
bitstrings

Schema theorem
• Characterizes evolution of population in terms of the no. of instances

representing each schema

• Schema = string of 0,1,* (don’t care)
– Schema: 0**1*
– Instance of above schema: 00110, 01111, …

• è characterize population by no. of instances representing each
possible schema

• m(s,t) = no. of instances of schema s in pop. at time t

• Obs. An individual may belong to (represent) several schemas

• Evolution of a schema depends on
– Selection
– Crossover
– Mutation

Selection step analysis
• Expected number of

instances of schema s at
t+1
– Proportional to avg.

fitness of instances of
s at t

– Inversely proportional
to the avg. fitness of all
population p at t

• è schemas with above
average fitness will be
represented in next
generation with
increasing frequency

Schema theorem
• Lower bound on

expected frequency of
schema s (considering
selection, crossover,
and mutation steps)

• è More fit schemas will
grow in influence,
especially schemas
having many *

Effect of selection Effect of 1-pt. crossover
Effect of mutation

Obs. on GA
• Bit string encoding (and evaluation function design) à critical!!!!!

• Not necessary binary strings à may use characters from an alphabet

• Easy to implement

• Requires no complex math tools (e.g. derivatives in NN)

• Only changes from problem to problem
– Evaluation function
– Number of bits in string

• Not guaranteed to find optimal solution

• “second best way” to solve a problem

• Applied in optimization problems
– Circuit layout
– Choosing net topology of a NN
– TSP

Why GA works - schemas

• Use schema to characterize the evolution

