Ch8. Instance-Based Learning 8.1, 8.2 S. Visa

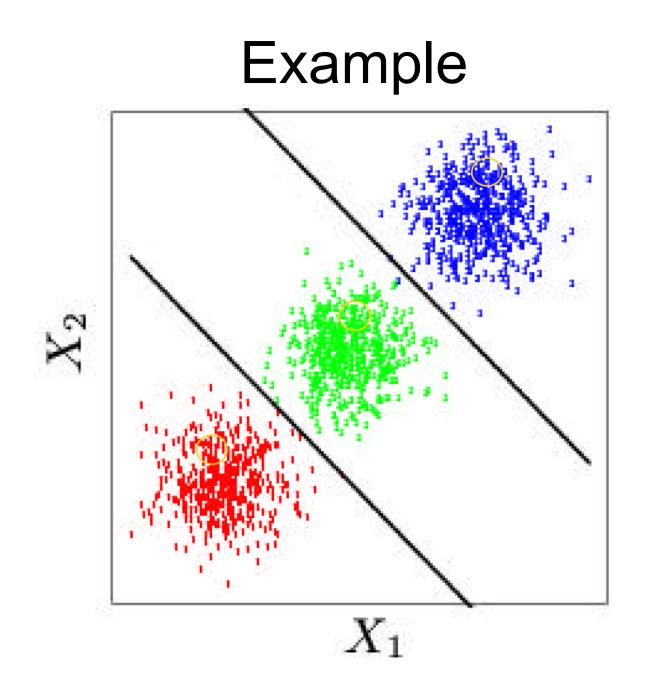
Instance-Based Learning

- = stores all ex. or some representatives
- Classification of a new instance x → based on its relation with other observed ex. → lazy methods
- Ex.
 - Prototype methods (Min.Dist.Classif., k-Means clustering, k-Prototypes)
 - k-Nearest Neighbors
 - Locally weighted regression
 - Radial basis function
- Simple and model free
- Very effective for classification in real world data
- Not useful for understanding the nature of the relationship between the features and class outcome

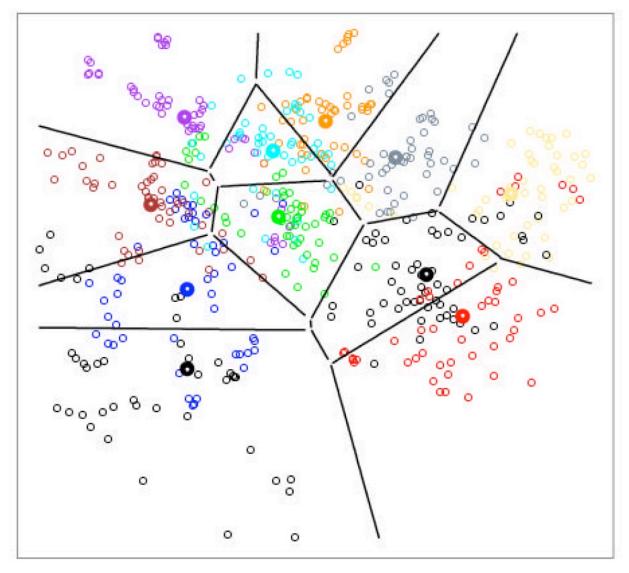
1) Prototype methods

- Training data: (x1,y1), (x2,y2), ..., (xn,yn)
- Compute one prototype for each class

 E.g. class center (Min. dist. classifier): Ci =Σ_ix / |Ci|
- Classification: a new instance is classified to the class of its "closest" prototypes
- → very effective when prototypes are well positioned + data linearly separable

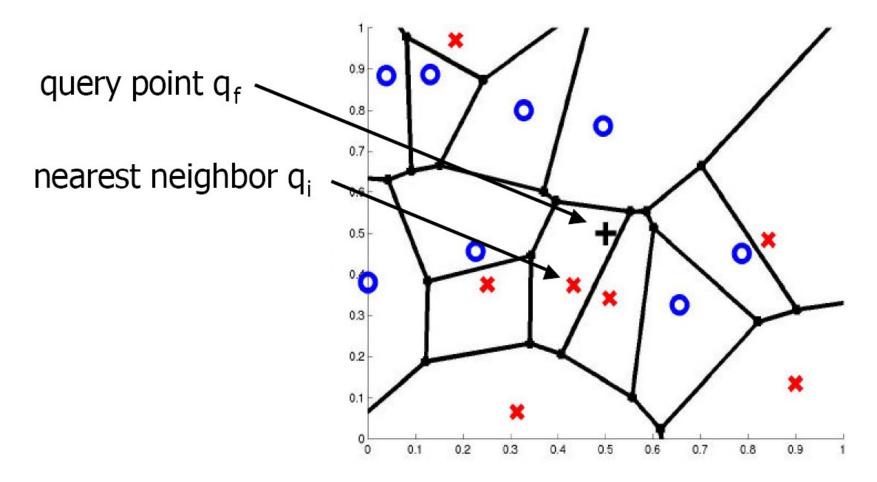


Example: vowel data



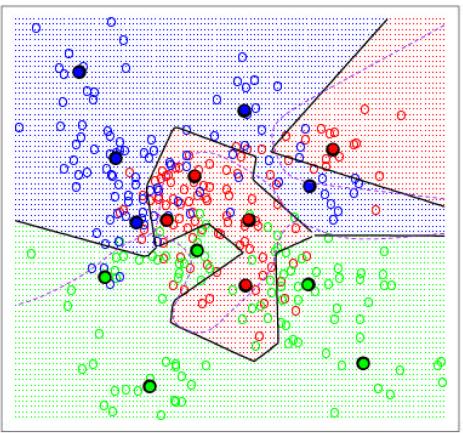
Voronoi diagram

- edecomposition of space det. by distances to a specific set of points
- Segments in a V. diagram = pts. equidistant to 2 prototypes



Modeling irregular class boundaries

- k (>1) prototypes for each class
- How many prototypes and where to put them?
 - → k-means clustering



K-means clustering

- Delivers k prototypes for a given class
- See demo in class (1st demo is really nice) <u>https://www.naftaliharris.com/blog/visualizing-k-means-clustering/</u>

https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

http://shabal.in/visuals/kmeans/4.html

- Algorithm
 - Start with an initial set of centers
 - Iterate until convergence
 - For each center, identify tr. points (= its cluster) that are closer to it than any other center
 - For each cluster, compute its mean vector that becomes its new center

K-means clustering -demo

• Set-up: 5 red points; k=2 random prototypes shown in blue

Iteration = 1

- Black lines show closest prototype for all points
 - dist((1,9),(3,10)) = sqrt[$(1-3)^2 + (9-10)^2$] = sqrt[5] = <u>2.23</u>
 - dist((1,9),(4,8)) = sqrt[$(1-4)^2 + (9-8)^2$] = sqrt[10] = 3.16
 - Point (1,9) is closest to prototype (3,10) hence will belong to that cluster, at least at this iteration

-

- Compute new prototypes
 - $(1,9), (3,10) \rightarrow ((1+3)/2, (9+10)/2) = (2, 9.5)$
 - $(4,8), (8,2), (10,2) \rightarrow (4+8+10)/3, (8+2+2)/3) = (7.3, 4)$

Iteration = 2

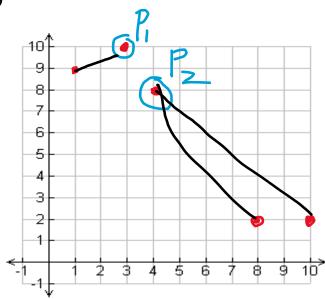
- Draw lines to show closest prototype for all points
 - dist((x1,y1),(xp,yp)) = sqrt[(x1-xp)^2 + (y1-yp)^2], where (xp,yp) is a prototype

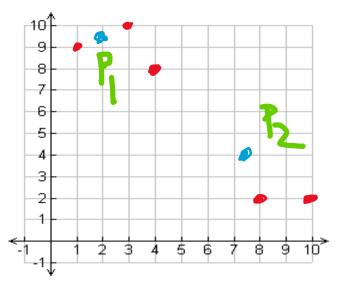
- ..

- Compute new prototypes
 - $(x1,y1), (x2,y2), \dots (xn, yn) \rightarrow ((x1+x2+\dots+xn)/n, (y1+1y2+\dotsyn)/n)$

Iteration = p

(repeat until convergence, i.e. no changes in location of prototypes)



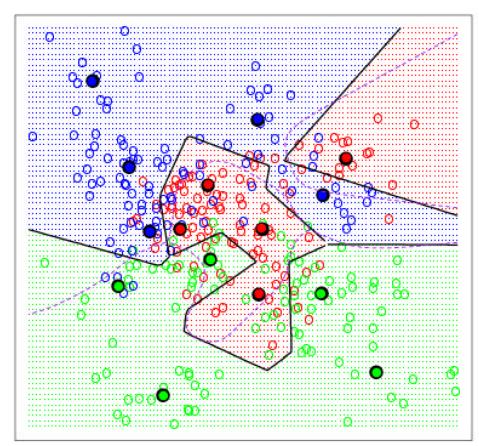


K-prototypes method

- Apply k-means clustering to tr. data in each class separately, using k prototypes per class
- Assign a class label to each of the c*k prototypes
- Classify x to the class of the closest prototype

Obs. - K-prototypes method

- "Negative" ex. not considered
- Many prototypes near class boundary
- → potential misclassification for points near boundary
- Solution → use LVQ



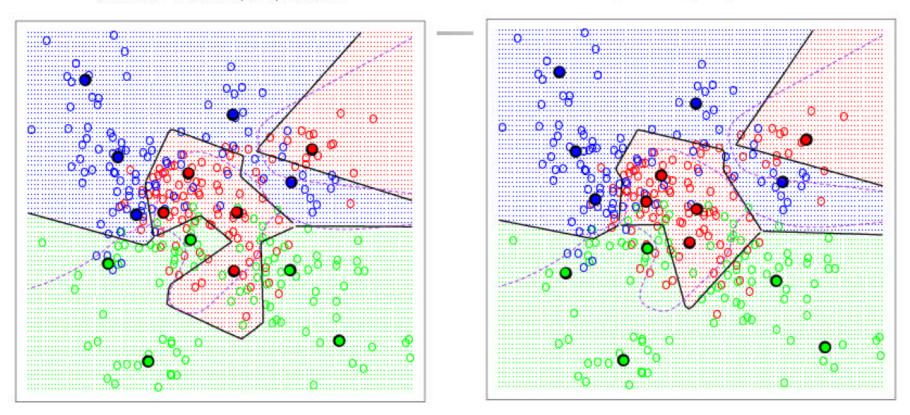
Learning vector quantization (LVQ)

- Choose k prototypes e.g. use K-means
- Sample (rand.) an ex. (xi,vi); let (mj,gj) be the closest prototype
 - If vi=gj, move prototype towards (xi,vi)
 - mj=mj+ε(xi-mj)
 - else move prototype away from (xi,vi)
 - mj=mj-ε(xi-mj)
- Repeat above step, decreasing learning rate ε with each iteration until zero

Learning vector quantization

K-means - 5 Prototypes per Class

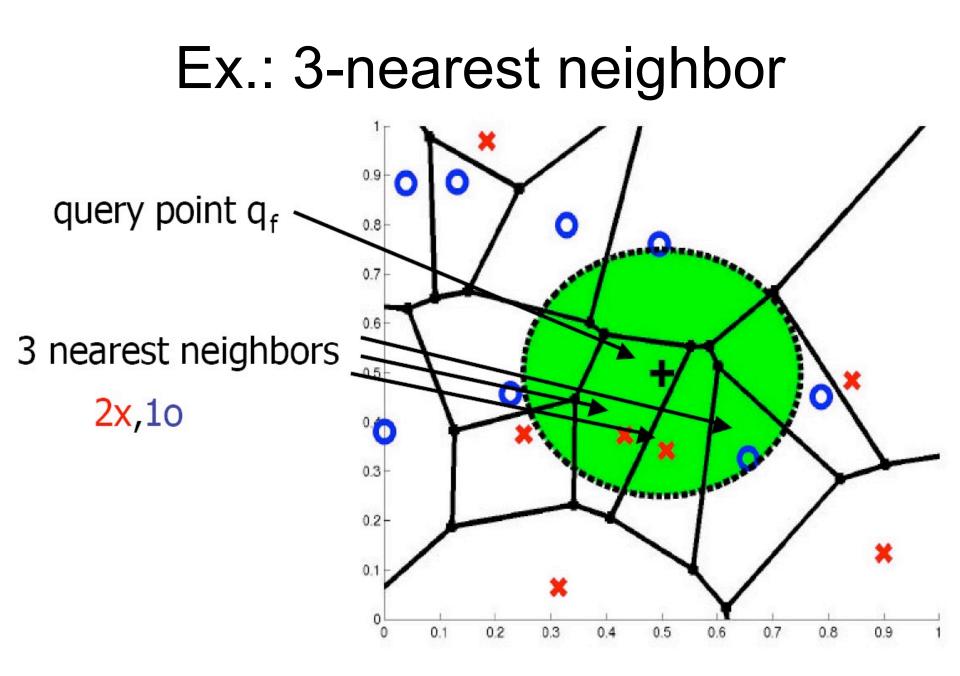
LVQ - 5 Prototypes per Class



• Difficult to understand prototypes' properties

2) K-nearest neighbor (k-NN)

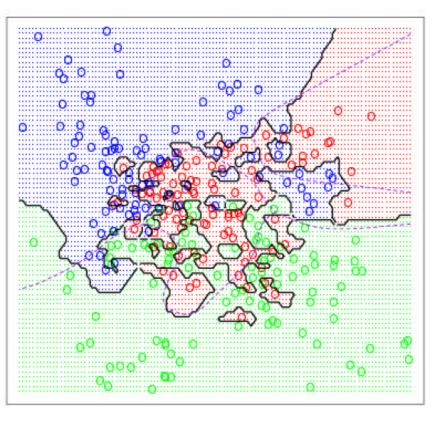
- Key idea: just store all training examples
 Memory based, model free classifier
- K=1 → Nearest neighbor
 - For test point x, find its closest point from tr. set
 - x has same class as its neighbor
- K-Nearest neighbor
 - For test point x. find its k closest points from tr. set
 - x has same class as the majority of its k nearest points



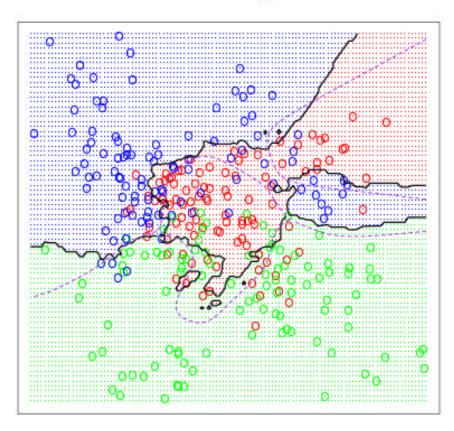
Ex.: 7-nearest neighbor 0.9 0 query point q_f 0.8 **Q** 0.7 0.6 7 nearest neighbors 0.5 3x,40 × 0.3 0.2 0.1 01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k-NN for classification

1-Nearest Neighbor



15-Nearest Neighbors



Ex. of dist. Weighted 5-NN

Red

Point	Label	Distance	Weight
(x1,y1)	Red	0.2	5
(x2,y2)	Red	0.5	2
(x3,y3)	Green	0.7	1.4
(x4,y4)	Green	1.2	0.8
(x5,y5)	Green	1.5	0.6

Calculate Weight

1.4 + 0.8 + 0.6 = 2.8

Based on a Weighing Function

5+2=7

Distance Increases, Weight decreases

Simplest Weighing function

K=5

Obs.

If considering ONLY labels of 5 neighbors -> green
 If considering weighted dist of 5 neighbors -> red

Weight \rightarrow shows importance of that neighbor Weight \rightarrow here is 1/d but usually is 1/d²

Distance-weighted k-NN

1) Weight nearer neighbors more heavily – formula for regression

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

- (x1,f(x1)), (x2, f(x2)), ...(xk, f(xk)) k data nearest to test data xq
- f(xq) regression value computed for xq
- 2) Formula for classification $\hat{f}(x_q) \leftarrow \operatorname*{argmax}_{v \in V} \sum_{i=1}^k w_i \delta(v, f(x_i))$
- $\delta(v, f(xi)) = 1$ if $v = f(x_i)$, and 0 otherwise
- f(xq) class for xq
- V set of all classes
- → you may use all training examples instead of just k (Shepard's method)
 - OBS. very distant points will contribute very little in the decision
 - Disadvantage: slower

Obs. on k-NN

- When to use it?
 - Less than 20 attrib.
 - Lots of training data
 - Good for image classification (in some cases better than C4.5 and NN, see Statlog project)

• Adv.

- Learn complex target functions
- Training very fast = zero
- kNN with majority vote approximates Bayes classifier
- Disadv.
 - Slow at query time
 - Easily fooled by irrelevant attributes
 - Difficulties in high dimensions \rightarrow curse of dimensionality

Irrelevant attributes and the curse of dimensionality

- Ex. 20 attr. but only 2 are relevant for classification
 - → instances with identical 2 most relevant attributes may be distant in 20-dimensional space!
 - ooops → a major drawback
- As no. of attrib.↑
 - \rightarrow data becomes sparse
 - To capture 10% of data, we must cover 80% of the range of each attrib.
 - Data closer to edges of the sample space than to each other
- → Rescale
 - E.g. a1:[0,1]; a2: [-10,10]
 - Distance w.r.t. a1 always small, hence a1 has small influence
- → Attribute weighting

K-means clustering vs k-nearest neighbors

- unsupervised learning (class label <u>not</u> known)
- delivers prototypes, or even classes

- supervised learning (class label <u>are</u> known)
- used for classification of new data

