Ch6. Bayesian Learning
 6.1-6.3.1, 6.7-6.11

S. Visa

Basics of probability

- $P(T)=$ probability that event T occurs
- $P(T \mid S)=$ probability that event T occurs given that S has occurred (conditional probability)
- Rules
- Complement: $\mathrm{P}(\sim A)=1-\mathrm{P}(\mathrm{A})$
- Disjunction: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- Conjunction: $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$
- Th. of total probability: $P(B)=\Sigma P\left(B \mid A_{i}\right) P\left(A_{i}\right)$ where A_{i} are mutually exclusive and $\Sigma P\left(A_{i}\right)=1$

Introduction

- $P(T \mid S)=$ probability that event T occurs given that S has occurred
- Example
- $P(U)=$ probab. of drawing Ace and Queen of Diamonds on 2 draws
- $P(A)=1 / 52 \rightarrow$ probab. to draw Ace of Diamond
- $P(Q \mid A)=1 / 51 \rightarrow$ probab. that Queen of Diamond is drawn, given that Ace of Diamond was drawn already
$-\rightarrow P(U)=1 / 52^{*} 1 / 51=P(A)^{*} P(Q \mid A)$
- Similarly, $P(U)=P(Q)^{*} P(A \mid Q)=1 / 52^{*} 1 / 51$
- Solving eq. $P(A)^{*} P(Q \mid A)=P(Q){ }^{*} P(A \mid Q) \rightarrow$ Bayes Product Th.
- Bayes General Product Theorem
- Bayes Theorem in ML

$$
P(A \mid Q)=\frac{P(Q \mid A) * P(A)}{P(Q)}
$$

$$
P(h \mid D)=\frac{P(D \mid h) * P(h)}{P(D)}
$$

PART A

- Find most probable h given D and H

Bayesian learning - MAP

- Posterior probability
- = probab. of h given data set b
- = probab. that h is the sol. for the problem
- Posterior probab. computation uses
- Likelihood of h
- = probab. that data D occurs if h were the correct hypothesis for the pb .
- Prior probability of h
- = probab. that h is correct if D is not considered
- $P(D)$
- = probab. that data D occurs independently
- Learning criteria: h with largest posterior probability
\rightarrow Maximum Aposteriori Hypothesis (MAP)
- Note
$-P(D)$ is constant \rightarrow ignore it
- posterior = likelihood * prior = evidence

Bayesian Learning - ML

- Maximum likelihood (ML) hypothesis
- = MAP when all h are equally likely
\rightarrow particular case of MAP

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

Generally want the most probable hypothesis given
the training data
Maximum a posteriori hypothesis $h_{M A P}$:

$$
\begin{aligned}
h_{M A P} & =\arg \max _{h \in H} P(h \mid D) \\
& =\arg \max _{h \in H} \frac{P(D \mid h) P(h)}{P(D)} \\
& =\arg \max _{h \in H} P(D \mid h) P(h)
\end{aligned}
$$

If assume $P\left(h_{i}\right)=P\left(h_{j}\right)$ then can further simplify, and choose the Maximum likelihood (ML)
hypothesis

$$
h_{M L}=\arg \max _{h_{i} \in H} P\left(D \mid h_{i}\right)
$$

Example: using MAP

- Given: a lab test for cancer gives
- pos. result 98\% of times when cancer is present
- $\mathrm{P}(+\mid$ cancer $)=.98$
- $\mathrm{P}(-$ |cancer $)=.02$
- neg. result 97\% of times if cancer is absent
- $P(+\mid \sim$ cancer $)=.03$
- $\mathrm{P}(-\mid \sim$ cancer $)=.97$
- 0.8% of population has cancer (this is the prior)
- $P($ cancer $)=.008$
- $\mathrm{P}(\sim$ cancer $)=.992$
- Most probable h = ~cancer
- Q: given pos. result of a lab work, the patient is diagnosed cancer or ~cancer?
- Sol:
- $\mathrm{P}($ cancer $\mid+)=\mathrm{P}(+\mid \text { cancer })^{*} \mathrm{P}($ cancer $)=.98^{*} .008=.0078$
- $\mathrm{P}(\sim$ cancer $\mid+)=\mathrm{P}(+\mid \sim$ cancer $) * \mathrm{P}(\sim$ cancer $)=.03^{*} .992=.0298$
$-\rightarrow h_{\text {MAP }}=\sim$ cancer
- $\mathrm{h}_{\mathrm{ML}}=$? (Note: can use it only when $\mathrm{P}($ cancer $)=\mathrm{P}(\sim$ cancer) $)$
- Obs: Bayesian inference dep. strongly on the prior probability

Brute force MAP/ML hypothesis learner

1. For each hypothesis h in H, calculate the posterior probability

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

2. Output the hypothesis $h_{M A P}$ with the highest posterior probability

$$
h_{M A P}=\underset{h \in H}{\operatorname{argmax}} P(h \mid D)
$$

- Obs:
- Not practical for large H
- Standard for evaluating or justifying other learning algorithms

PART B

- Find most probable classification for x given D and H

Bayes optimal classifier

- Pb. considered until now
- Given D and H, find most probable h
- Now consider this pb:
- Given D, H, and a new instance x, what is most probable classification of x ?
- Answer: most probable classif. $=h(x)$, where h is most probable for D (MAP)
- NO!!!
- BEST classifier takes advantage of ALL h!
- Ex.
- 3 possible $\mathrm{h}: \mathrm{P}\left(\mathrm{h}_{1} \mid \mathrm{D}\right)=.4, \mathrm{P}\left(\mathrm{h}_{2} \mid \mathrm{D}\right)=\mathrm{P}\left(\mathrm{h}_{3} \mid \mathrm{D}\right)=.3 \boldsymbol{\rightarrow} \mathbf{h}_{1}$ is MAP
- Assume for x : $\mathrm{h}_{1}(\mathrm{x})=+, \mathrm{h}_{2}(\mathrm{x})=\mathrm{h}_{3}(\mathrm{x})=-$
- What is most probable classification of x ?

Bayes optimal classifier

- Most probable classif. of x is obt. by comb. the predictions of all h, weighted by their posteriors (see formula, where V is the set of classes)

$$
\arg \max _{v_{j} \in V} \sum_{h_{i} \in H} P\left(v_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)
$$

- In our ex:

$$
\begin{aligned}
& P\left(h_{1} \mid D\right)=.4, P\left(-\mid h_{1}\right)=0, P\left(+\mid h_{1}\right)=1 \\
& P\left(h_{2} \mid D\right)=.3, P\left(-\mid h_{2}\right)=1, P\left(+\mid h_{2}\right)=0 \\
& P\left(h_{3} \mid D\right)=.3, P\left(-\mid h_{3}\right)=1, P\left(+\mid h_{3}\right)=0
\end{aligned}
$$

therefore

$$
\begin{aligned}
\sum_{h_{i} \in H} P\left(+\mid h_{i}\right) P\left(h_{i} \mid D\right) & =.4 \\
\sum_{h_{i} \in H} P\left(-\mid h_{i}\right) P\left(h_{i} \mid D\right) & =.6
\end{aligned}
$$

and

$$
\arg \max _{v_{j} \in V} \sum_{h_{i} \in H} P\left(v_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)=-
$$

- OBS. MAP h_{1} predicts + but Bayes optimal h (which uses theorem of total probability) predicts -

OBS. on Bayes optimal classifier

- NO classifier based on D and H can exceed the performance of the Bayes optimal classifier
- Bayes optimal is optimal but expensive \rightarrow uses all h in H
- Drawback - choose an H s.t. one CAN compute all posteriors $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right) \rightarrow$ this might reduce choice of H so severely that other techniques using more powerful H can do better job
- Even so, offers a performance target for all Bayesian classifiers

Gibbs classifier ('91)

- Randomly selects an h according to posteriors $P(h \mid D)$ (in practice use $P(h)$)
- Prediction made by $h(x)$
- Surprisingly: $\mathrm{E}\left(\operatorname{err}_{\mathrm{Gibbs}}\right)<=2^{*} \mathrm{E}\left(\right.$ err $\left._{\text {BayesOptimal }}\right)$
- Apply Gibbs to VS with uniform distribution
- Pick any h
- Expected err is no worse than twice Bayes Optimal
- Not very good but you get a prediction model at 0 cost

Naïve Bayes classifier

- Simple, v. practical, widely used
- Diagnosis
- Text documents classification
- Based on Bayes rule + assumption of conditional independence
- Assumption often violated in practice
- Even, then, it usually works well
- Applies to learn MAP h for conj. of discrete attributes

Classification using Bayes rule

- Given attribute values, what is most probable class (value) of target variable?

$$
\begin{aligned}
v_{M A P} & =\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j} \mid a_{1}, a_{2} \ldots a_{n}\right) \\
v_{M A P} & =\underset{v_{j} \in V}{\operatorname{argmax}} \frac{P\left(a_{1}, a_{2} \ldots a_{n} \mid v_{j}\right) P\left(v_{j}\right)}{P\left(a_{1}, a_{2} \ldots a_{n}\right)} \\
& =\underset{v_{j} \in V}{\operatorname{argmax}} P\left(a_{1}, a_{2} \ldots a_{n} \mid v_{j}\right) P\left(v_{j}\right)
\end{aligned}
$$

- Pb.: large data set needed to estimate $P\left(a_{1} \ldots a_{n} \mid v_{j}\right)$

Naïve Bayes classifier

- Naïve Bayes assumption: attributes are independent, given the class
$\rightarrow P\left(a_{1} \ldots a_{n} \mid v_{j}\right)=P\left(a_{1} \mid v_{j}\right) P\left(a_{2} \mid v_{j}\right) \ldots P\left(a_{n} \mid v_{j}\right)$
- Under this assumption $\rightarrow \mathrm{v}_{\text {MAP }}$ is:

$$
v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \prod_{i} P\left(a_{i} \mid v_{j}\right)
$$

Naive Bayes algorithm

Naive_Bayes_Learn(examples)
For each target value v_{j}

$$
\hat{P}\left(v_{j}\right) \leftarrow \text { estimate } P\left(v_{j}\right)
$$

For each attribute value a_{i} of each attribute a

$$
\hat{P}\left(a_{i} \mid v_{j}\right) \leftarrow \text { estimate } P\left(a_{i} \mid v_{j}\right)
$$

Classify_New_Instance (x)

$$
v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} \hat{P}\left(v_{j}\right) \prod_{a_{i} \in x} \hat{P}\left(a_{i} \mid v_{j}\right)
$$

Naive Bayes: estimation

- Estimate probability from sample proportion
$-P(v)=\operatorname{count}(v) / N$
$-P(A \mid B)=\operatorname{count}(A$ and $B) / c o u n t(B)$
- Ex.: N = 100 with 70+ and 30-
$-P(+)=0.7$ and $P(-)=0.3$
- Among 70 pos. ex., 35 with $a_{1}=$ SUNNY \rightarrow $\mathrm{P}\left(\mathrm{a}_{1}=\mathrm{SUNNY} \mid+\right)=0.5$

Training examples for PlayTennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Naïve Bayes: example

- Consider new instance
<Outlook=sun, Temp=cool, Humid=high, Wind=strong>
- Use NB to classify it: 'yes' or 'no'?
- Compute $v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \prod_{i} P\left(a_{i} \mid v_{j}\right)$
- $P($ yes $)=?, P(n o)=$?
- P (sun|yes)=? P (cool|yes)=? P (high|yes) $=$? $P($ stronglyes $)=$?
- $P($ sun|no $)=$? ...

Consider PlayTennis again, and new instance
\langle Outlk $=$ sun,$T e m p=\operatorname{cool}$, Humid $=$ high, Wind $=$ strong
Want to compute:

$$
v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \Pi_{i} P\left(a_{i} \mid v_{j}\right)
$$

$P(y) P($ sun $\mid y) P(\operatorname{cool} \mid y) P($ high $\mid y) P($ strong $\mid y)=.005$
$P(n) P($ sun $\mid n) P(\operatorname{cool} \mid n) P($ high $\mid n) P($ strong $\mid n)=.021$

$$
\rightarrow v_{N B}=n
$$

Naïve Bayes: subtleties

- Estimating probabilities is the major challenge
- Conditional independence assumption is often violated
- ...but it works surprisingly well anyway
- What if attribute a_{i} never observed for class v_{j} (due to small tr. set)?
$-\rightarrow$ estimate $P\left(a_{i} \mid v_{j}\right)$ as 0 because count $\left(a_{i}\right.$ and $\left.v_{j}\right)=0$
- Effect too strong \rightarrow gives 0 to candidacy of v_{j}
- Sol.: use m-estimate smoothing

$$
\hat{P}\left(a_{i} \mid v_{j}\right) \leftarrow \frac{n_{c}+m p}{n+m}
$$

where

- n is number of training examples for which $v=v_{j}$,
- n_{c} number of examples for which $v=v_{j}$ and $a=a_{i}$
- p is prior estimate for $\hat{P}\left(a_{i} \mid v_{j}\right)$
- m is weight given to prior (i.e. number of "virtual" examples)

Ex.: m-estimate smoothing

- 70+, 30-
- $\mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)=0 / 70=0$
- Using m-estimate $\rightarrow \mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)=\frac{3}{70+10}=0.04$
- $10=$ no of virtual ex.
$-1 / 3=$ there are 3 possible values for a1 having uniform distribution

Ex.: m-estimate smoothing

- $\mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)=.31$ (is TRUE probability; ~2 out of 6 +ves have a1=s)
- Assume that in tr. data only 1 ex. (out of 6 ex.) in +ve class has a1=s
- \rightarrow estimate of $\mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)$ from tr. data is $1 / 6=.17$ (instead of $.31!!!!!)$
- To deal with distortion of probab. when dealing with small tr. sets \rightarrow use m-estimate

$$
1+50 * \frac{1}{9}
$$

$\rightarrow \mathrm{P}\left(\mathrm{a} 1=\mathrm{s} \left\lvert\,+\mathrm{H}=\frac{3}{6+50}=0.294\right.\right.$

- $50=$ no of virtual ex.
- $1 / 3$ = there are 3 possible values for a1 having uniform distribution

Obs. on m-estimate smoothing

- In previous ex., one can use more than 50 virtual ex. to get even closer to .31
- BUT, actual probab. value (here .31) is unknown!
- M-estimate only improves the estimate of an unknown probability when dealing with small data sample
- $\mathrm{m}=0 \rightarrow$ m-estimate $=\mathrm{n}_{\mathrm{c}} / \mathrm{n}(=1 / 6 \rightarrow$ original estimate! $)$
- $\mathrm{m} \rightarrow \infty \rightarrow \mathrm{m}$-estimate $=\mathrm{p}(=1 / 3 \rightarrow$ prior estimate $\mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)$)
- Instead of using formula \rightarrow pick a value for $\mathrm{P}(\mathrm{a} 1=\mathrm{s} \mid+)$ from intervals $\left[n_{d} / n, p\right.$) or ($\left.p, n_{c} / n\right]$ (whichever is non-empty)
- With no additional info \rightarrow pick $\left.\left(\mathrm{n}_{\mathrm{c}} / \mathrm{n}+\mathrm{p}\right) / 2\right)$ as compromise between observed probab. and assumed prior probab.

Naïve Bayes classifier for text

- Ex.
- Learn which new articles are of interest
- Learn to classify web pages by topic
- NB works well
- How to apply NB?
- How do we represent ex.?
- What are the attributes?

Representation for text classification

- Attributes = word positions
- i.e. attribute $\mathrm{i}=\mathrm{i}$-th word in text
- Values for attribute = word that occurs there
- doc=($\left.a_{1}=w_{1}, \ldots, a_{n}=w_{n}\right)$
- Can chose other repres.: attr=specific word, value=its freq. in text
- Assumption: probab. of having a specific word is independent of position

$$
\begin{aligned}
& -P\left(a_{i}=w_{k} \mid v_{j}\right)=P\left(a_{m}=w_{k} \mid v_{j}\right)=P\left(w_{k} \mid v_{j}\right) \\
& -P\left(d o c \mid v_{j}\right)=P\left(a_{1}=w_{1}, a_{2}=w_{2}, \ldots, a_{n}=w_{n} \mid v_{j}\right)= \\
& \quad=P\left(w_{1} \mid v_{j}\right)^{\text {freq(w1) }} \ldots P\left(w_{n} \mid v_{j}\right)^{\text {freq(wn })}
\end{aligned}
$$

Twenty newsgroups (Jochims’ 96)

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics	misc.forsale
comp.os.ms-windows.misc	rec.autos
comp.sys.ibm.pc.hardware	rec.motorcycles
comp.sys.mac.hardware	rec.sport.baseball
comp.windows.x	rec.sport.hockey
alt.atheism	sci.space
soc.religion.christian	sci.crypt
talk.religion.misc	sci.electronics
talk.politics.mideast	sci.med
talk.politics.misc	
talk.politics.guns	

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x
alt.atheism
soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns

- 20 classes
- 1000 docs for each class
- $2 / 3 \rightarrow$ training; $1 / 3 \rightarrow$ test
- Used 100 most frequent words
- Remove
- the, and, of, ...
- any word occurring fewer than 3 times
- Resulting vocabulary $\sim 38,500$ words
- Random guessing $\rightarrow 5 \%$ accuracy

Naive Bayes: 89% classification accuracy

Algorithm

Learn_naive_Bayes_text(Examples, V)

1. collect all words and other tokens that occur in Examples

- Vocabulary \leftarrow all distinct words and other tokens in Examples

2. calculate the required $P\left(v_{j}\right)$ and $P\left(w_{k} \mid v_{j}\right)$ probability terms

- For each target value v_{j} in V do
- docs $_{j} \leftarrow$ subset of Examples for which the target value is v_{j}
$-P\left(v_{j}\right) \leftarrow \frac{\mid \text { docs }_{j} \mid}{\mid \text { Examples } \mid}$
$-T e x t_{j} \leftarrow$ a single document created by concatenating all members of docs $_{j}$
$-n \leftarrow$ total number of words in Text $_{j}$ (counting duplicate words multiple times)
- for each word w_{k} in Vocabulary
$* n_{k} \leftarrow$ number of times word w_{k} occurs in Text ${ }_{j}$
* $P\left(w_{k} \mid v_{j}\right) \leftarrow \frac{n_{k}+1}{n+\mid \text { Vocabulary } \mid}$
$v_{N B}=\underset{v_{j} \in V}{\operatorname{argmax}} P\left(v_{j}\right) \prod_{i \in \text { positions }} P\left(a_{i} \mid v_{j}\right)$

Learning curve for 20 newsgroups

Accuracy vs. Training set size ($1 / 3$ withheld for test)

Bayesian Belief Networks

- Consider two extremes
- Bayes Optimal Classifier - get correct joint probability distribution
- \rightarrow optimal classifier
- But infeasible in practice (too much data needed)
- Naïve Bayes
- Much more feasible
- But strong (and restrictive) assumption of cond. independence
- Something in between?
- = make some independence assumptions but only where reasonable?
$-\rightarrow$ BBN describe conditional independence among subsets of variables
- BBN is a compromise between BOC and NB

Bayesian Belief Networks

- Def. BBN is directed acyclic graph (nodes + arcs) + conditional probability table for each node
- Represent the joint probability distribution of the variables (=all cond. probab. among variables)
- Use the concept of conditional independence
- $\mathrm{P}(\mathrm{A} 1 \mid \mathrm{A} 2, \mathrm{~V})=\mathrm{P}(\mathrm{A} 1 \mid \mathrm{V})$
- A1 and A2 are conditional independent given V
- = even though A1 and A2 may influence each other, the fact that V is true, completely explains that
- E.g. Campfire is cond. indep. of Lightning given Storm

Bayesian Belief Networks

Network represents a set of conditional independence assertions:

- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.
- Directed acyclic graph

Cond. indep. and joint probab.

- Node v is cond. indep. of node na (not an ancestor of v) given its immediate ancestors a1,...,an
- $P(v \mid n a, a 1, \ldots, a n)=P(v \mid a 1, \ldots, a n)$
- P(ForestFire|Thunder, Storm, Lightening, Campfire) $=\mathrm{P}($ ForestFire|Storm, Lightening, Campfire)
- Chain rule of probability describes the joint probability of a set of variables
$-P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$
$-P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)$
- In BBN - probab. of immediate ancestors of node xi completely det. the joint probab. distrib. for xi
- $\mathrm{P}(\mathrm{x} 1, \ldots, \mathrm{xn})=\prod_{\mathrm{i}} \mathrm{P}(\mathrm{xi} \mid$ parents(xi))
- Ex. $\mathrm{P}(\mathrm{S}, \mathrm{B}, \mathrm{L}, \mathrm{C}, \mathrm{T}, \mathrm{F})=$?

BBN example

- A) Compute unconditional (marginal) probability
- $P(N L=y)=P(N L=y \mid T S=y) * P(T S=y)+P(N L=y \mid T S=n) * P(T S=n)=0.17$
- $P(M L=y)=?(0.51)$
- B) Revising probabilities when propagating evidence
- We know TS = y
- $P(N L=y)=P(N L=y \mid T S=y) * P(T S=y)+0=0.8 * 1+0=0.8$
- $P(M L=y)=?(0.6)$
- We know NL=y
- $P(T S=y)=$?
- $=P(T S=y \mid N L=y)=[P(N L=y \mid T S=y) * P(T S=y)] / P(N L=y)=0.8 * 0.1 / 0.17=0.47$
- Obs. The evidence NL=y increased the probab. that TS=y!!!
- $\quad P(M L=y)=$?
- $=P(M L=y \mid T S=y) * P(T S=y)+P(M L=y \mid T S=n) * P(T S=n)=0.6 * 0.47+0.5 * 0.53=0.55$
- Obs. The evidence $N L=y$ propagated to $M L$ and slightly increased the probab. that $M L=y!!!$

