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Basics of probability
• P(T) = probability that event T occurs 

• P(T|S) = probability that event T occurs given that S has 
occurred (conditional probability)

• Rules
– Complement: P(~A) = 1- P(A)
– Disjunction: P(A or B) = P(A)+P(B)-P(A and B)
– Conjunction: P(A and B) = P(A)P(B|A)=P(B)P(A|B)
– Th. of total probability: P(B) = ΣP(B|Ai)P(Ai) where Ai are 

mutually exclusive and ΣP(Ai)=1



Introduction
• P(T|S) = probability that event T occurs given that S has occurred

• Example 
– P(U) = probab. of drawing Ace and Queen of Diamonds on 2 draws
– P(A) = 1/52 à probab. to draw Ace of Diamond
– P(Q|A) = 1/51 à probab. that Queen of Diamond is drawn, given that 

Ace of Diamond was drawn already
– è P(U) = 1/52*1/51= P(A)* P(Q|A) 
– Similarly, P(U) = P(Q)* P(A|Q) = 1/52*1/51
– Solving eq. P(A)* P(Q|A) =  P(Q) *P(A|Q)è Bayes Product Th.

• Bayes General Product Theorem

• Bayes Theorem in ML )(
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PART A

• Find most probable h given D and H



Bayesian learning - MAP

• Posterior probability
– = probab. of h given data set D 
– = probab. that h is the sol. for the problem

• Posterior probab. computation uses 
– Likelihood of h 

• = probab. that data D occurs if h were the correct hypothesis for the pb.
– Prior probability of h 

• = probab. that h is correct if D is not considered
– P(D)

• = probab. that data D occurs independently

• Learning criteria: h with largest posterior probability
è Maximum Aposteriori Hypothesis (MAP)

• Note 
– P(D) is constant è ignore it
– posterior = likelihood * prior = evidence
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Bayesian Learning – ML
• Maximum likelihood (ML) hypothesis 

– = MAP when all h are equally likely
– è particular case of MAP



Example: using MAP
• Given: a lab test for cancer gives 

– pos. result 98% of times when cancer is present
• P(+|cancer) = .98
• P(-|cancer) = .02

– neg. result 97% of times if cancer is absent
• P(+|~cancer) = .03
• P(-|~cancer) = .97

– 0.8% of population has cancer (this is the prior) 
• P(cancer) = .008
• P(~cancer) = .992
• Most probable h = ~cancer 

• Q: given pos. result of a lab work, the patient is diagnosed cancer or 
~cancer?

• Sol: 
– P(cancer|+) = P(+|cancer)*P(cancer) = .98*.008 = .0078
– P(~cancer|+) = P(+|~cancer)*P(~cancer) = .03*.992 = .0298
– è hMAP = ~cancer
– hML= ? (Note: can use it only when P(cancer)=P(~cancer)) 

• Obs: Bayesian inference dep. strongly on the prior probability 



Brute force MAP/ML hypothesis 
learner

• Obs:
– Not practical for large H
– Standard for evaluating or justifying other learning algorithms



PART B

• Find most probable classification for x  
given D and H



Bayes optimal classifier
• Pb. considered until now

– Given D and H, find most probable h 

• Now consider this pb:
– Given D, H, and a new instance x, what is most probable 

classification of x?
– Answer: most probable classif. = h(x), where h is most probable 

for D (MAP)
– NO!!!
– BEST classifier takes advantage of ALL h!
– Ex.

• 3 possible h: P(h1|D)=.4, P(h2|D)=P(h3|D)=.3 è h1 is MAP
• Assume for x: h1(x)=+, h2(x)=h3(x)=-
• What is most probable classification of x?



Bayes optimal classifier
• Most probable classif. of x is obt. by comb. the predictions of all h, weighted 

by their posteriors (see formula, where V is the set of classes)

• In our ex:

• OBS. MAP h1 predicts + but Bayes optimal h (which uses theorem of total 
probability) predicts -



OBS. on Bayes optimal classifier
• NO classifier based on D and H can exceed the 

performance of the Bayes optimal classifier

• Bayes optimal is optimal but expensive à uses all h in H

• Drawback – choose an H s.t. one CAN compute all 
posteriors P(hi|D)è this might reduce choice of H so 
severely that other techniques using more powerful H 
can do better job

• Even so, offers a performance target for all Bayesian 
classifiers



Gibbs classifier (‘91)
• Randomly selects an h according to posteriors 

P(h|D) (in practice use P(h))
• Prediction made by h(x)

• Surprisingly: E(errGibbs) <= 2*E(errBayesOptimal)
• Apply Gibbs to VS with uniform distribution

– Pick any h
– Expected err is no worse than twice Bayes Optimal
– Not very good but you get a prediction model at 0 cost



Naïve Bayes classifier
• Simple, v. practical, widely used

– Diagnosis
– Text documents classification

• Based on Bayes rule + assumption of conditional 
independence
– Assumption often violated in practice
– Even, then, it usually works well

• Applies to learn MAP h for conj. of discrete 
attributes



Classification using Bayes rule
• Given attribute values, what is most 

probable class (value) of target variable?

• Pb.: large data set needed to estimate 
P(a1…an|vj)

Bayes rule



Naïve Bayes classifier

• Naïve Bayes assumption: attributes are 
independent, given the class
– è P(a1…an|vj)=P(a1|vj) P(a2|vj) … P(an|vj)

• Under this assumption è vMAP is:



Naive Bayes algorithm



Naive Bayes: estimation
• Estimate probability from sample 

proportion
– P(v) = count(v)/N
– P(A|B)= count(A and B)/count(B)

• Ex.: N = 100 with 70+ and 30-
– P(+)=0.7 and P(-)=0.3
– Among 70 pos. ex., 35 with a1=SUNNY è

P(a1=SUNNY|+)=0.5



Training examples for PlayTennis



Naïve Bayes: example
• Consider new instance 

<Outlook=sun, Temp=cool, Humid=high, Wind=strong>

• Use NB to classify it: ‘yes’ or ‘no’?

• Compute 

• P(yes)=?, P(no)=?
• P(sun|yes)=? P(cool|yes)=? P(high|yes)=? 

P(strong|yes)=?
• P(sun|no)=? …



Naïve Bayes: example



Naïve Bayes: subtleties
• Estimating probabilities is the major challenge
• Conditional independence assumption is often violated
• …but it works surprisingly well anyway
• What if attribute ai never observed for class vj (due to 

small tr. set)?
– è estimate P(ai|vj) as 0 because count(ai and vj)=0
– Effect too strong è gives 0 to candidacy of vj
– Sol.: use m-estimate smoothing



Ex.: m-estimate smoothing
• 70+, 30-
• P(a1=s|+) = 0/70 = 0

• Using m-estimate è P(a1=s|+) =

– 10 = no of virtual ex.
– 1/3 = there are 3 possible values for a1 having 

uniform distribution
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Ex.: m-estimate smoothing
• P(a1=s|+) = .31 (is TRUE probability; ~ 2 out of 6 +ves have a1=s)
• Assume that in tr. data only 1 ex. (out of 6 ex.) in +ve class has a1=s
• è estimate of P(a1=s|+) from tr. data is 1/6=.17 (instead of .31!!!!!) 

• To deal with distortion of probab. when dealing with small tr. sets à
use m-estimate 

• è P(a1=s|+) =

– 50 = no of virtual ex.
– 1/3 = there are 3 possible values for a1 having uniform distribution
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Obs. on m-estimate smoothing
• In previous ex., one can use more than 50 virtual ex. to get 

even closer to .31 

• BUT, actual probab. value (here .31) is unknown!

• M-estimate only improves the estimate of an unknown 
probability when dealing with small data sample

• m = 0 è m-estimate = nc/n (=1/6 à original estimate!)
• mà∞ è m-estimate = p (=1/3 à prior estimate P(a1=s|+))
• Instead of using formula à pick a value for P(a1=s|+) from  

intervals [nc/n,p) or (p,nc/n] (whichever is non-empty) 
• With no additional info à pick (nc/n + p)/2) as compromise 

between observed probab. and assumed prior probab. 



Naïve Bayes classifier for text

• Ex.
– Learn which new articles are of interest
– Learn to classify web pages by topic

• NB works well
– How to apply NB?
– How do we represent ex.?
– What are the attributes?



Representation for text 
classification

• Attributes = word positions
– i.e. attribute i = i-th word in text
– Values for attribute = word that occurs there
– doc=(a1=w1,…,an=wn)
– Can chose other repres.: attr=specific word, value=its 

freq. in text

• Assumption: probab. of having a specific word is 
independent of position
– P(ai=wk|vj)=P(am=wk|vj)=P(wk|vj)
– P(doc|vj)=P(a1=w1, a2=w2,…, an=wn|vj)=

=P(w1|vj)freq(w1) …P(wn|vj)freq(wn)



Twenty newsgroups (Jochims’96)
• 20 classes

• 1000 docs for each class

• 2/3 à training; 1/3 à test

• Used 100 most frequent words

• Remove
– the, and, of, ... 
– any word occurring fewer than 3 

times 

• Resulting vocabulary ~ 38,500 
words

• Random guessing à 5% accuracy



Algorithm 



Learning curve for 20 newsgroups



Bayesian Belief Networks
• Consider two extremes

– Bayes Optimal Classifier – get correct joint probability distribution
• è optimal classifier
• But infeasible in practice (too much data needed)

– Naïve Bayes
• Much more feasible
• But strong (and restrictive) assumption of cond. independence

• Something in between?
– = make some independence assumptions but only where 

reasonable?
– è BBN describe conditional independence among subsets of 

variables
– BBN is a compromise between BOC and NB



Bayesian Belief Networks
• Def. BBN is directed acyclic graph (nodes + arcs) + 

conditional probability table for each node

• Represent the joint probability distribution of the 
variables (=all cond. probab. among variables)

• Use the concept of conditional independence
– P(A1|A2,V) = P(A1|V)

• A1 and A2 are conditional independent given V
• = even though A1 and A2 may influence each other, the fact that V 

is true, completely explains that
• E.g. Campfire is cond. indep. of Lightning given Storm



Bayesian Belief Networks



Cond. indep. and joint probab.

• Node v is cond. indep. of node na (not an ancestor of v) given its immediate ancestors 
a1,…,an 

– P(v|na,a1,…,an)=P(v|a1,…,an)
– P(ForestFire|Thunder, Storm, Lightening, Campfire) = P(ForestFire|Storm, Lightening, Campfire) 

• Chain rule of probability describes the joint probability of a set of variables
– P(x1,…,xn) = ∏i P(xi|x1,…,xi-1) 
– P(x1,x2,x3) = P(x1) P(x2|x1) P(x3|x1,x2) 

• In BBN - probab. of immediate ancestors of node xi completely det. the joint probab. 
distrib. for xi

– P(x1,…,xn) = ∏i P(xi|parents(xi)) 
– Ex. P(S,B,L,C,T,F) = ?



BBN example

• A) Compute unconditional (marginal) probability
– P(NL=y) = P(NL=y | TS=y) * P(TS=y) + P(NL=y | TS=n) * P(TS=n) = 0.17 
– P(ML=y) = ? (0.51)

• B) Revising probabilities when propagating evidence
– We know TS = y

• P(NL=y) = P(NL=y | TS=y) * P(TS=y) + 0 = 0.8 * 1 + 0 = 0.8
• P(ML=y) = ? (0.6)

– We know NL = y
• P(TS=y) = ?

– = P(TS=y | NL=y) = [ P(NL=y | TS=y) * P(TS=y) ] / P(NL=y) = 0.8 * 0.1 / 0.17 = 0.47
– Obs. The evidence NL=y increased the probab. that TS=y!!!

• P(ML=y) = ?
– = P(ML=y | TS=y) * P(TS=y) + P(ML=y | TS=n) * P(TS=n) = 0.6 * 0.47 + 0.5 *0.53 = 0.55
– Obs. The evidence NL=y propagated to ML and slightly increased the probab. that ML=y!!!

y à 0.1
n à 0.9
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y      n
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y      n

y à 0.8    0.1
n à 0.2    0.9


