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Basics of probability

P(T) = probability that event T occurs

P(T|S) = probability that event T occurs given that S has
occurred (conditional probability)

Rules

— Complement: P(~A) = 1- P(A)

— Disjunction: P(A or B) = P(A)+P(B)-P(A and B)

— Conjunction: P(A and B) = P(A)P(B|A)=P(B)P(A|B)

— Th. of total probability: P(B) = 2P(B|A;)P(A,) where A are
mutually exclusive and 2P(A;)=1



Introduction

P(T|S) = probability that event T occurs given that S has occurred

Example

Bayes General Product Theorem

Bayes Theorem in ML

P(U) = probab. of drawing Ace and Queen of Diamonds on 2 draws

P(A) = 1/52 - probab. to draw Ace of Diamond

P(Q|A) = 1/51 - probab. that Queen of Diamond is drawn, given that
Ace of Diamond was drawn already

= P(U) = 1/52*1/51= P(A)* P(Q|A)
Similarly, P(U) = P(Q)* P(A|Q) = 1/52*1/51
Solving eq. P(A)* P(QJA) = P(Q) *P(A|Q)=> Bayes Product Th.

PQ]A4)* P(4)
P(Q)

P(4]10) =

P(D|h)* P(h)

P(h| D)= D)




PART A

* Find most probable h given D and H



Bayesian learning - MAP

Posterior probability
— = probab. of h give
— = probab. that h i r the problem

« = probab. that data D occurs independently

Learning criteria: h with largest posterior probability
= Maximum Aposteriori Hypothesis (MAP)

Note
— P(D) is constant =» ignore it
— posterior = likelihood * prior = evidence



Bayesian Learning — ML

« Maximum likelihood (ML) hypothesis

— = MAP when all h are equally likely
— =» particular case of MAP

P(D[h)P(h)
P(D)
Generally want the most probable hypothesis given

the training data
Mazimum a posteriori hypothesis hys4p:

P(h|D) =

harap = argmax P(h|D)
_ P(D[h)P(h)
= argmax POD)
= arglpeajj}rcP(DM)P(h)

If assume P(h;) = P(h;) then can further simplify,
and choose the Mazimum likelihood (ML)
hypothesis

hML — arg %}ggf( P(Dlhl)



Example: using MAP

Given: a lab test for cancer gives

— pos. result 98% of times when cancer is present
* P(+|cancer) = .98
* P(-|cancer) = .02

— negq. result 97% of times if cancer is absent
* P(+|~cancer) = .03
» P(-|~cancer) = .97

— 0.8% of population has cancer (this is the prior)

» P(cancer) =.008
* P(~cancer) =.992
* Most probable h = ~cancer

Q: given pos. result of a lab work, the patient is diagnosed cancer or
~cancer?

— P(cancer|+) = P(+|cancer)*P(cancer) = .98*.008 = .0078

— P(~cancer|+) = P(+|~cancer)*P(~cancer) = .03*.992 = .0298
— =» hyap = ~cancer

— hy=? (Note: can use it only when P(cancer)=P(~cancer))

Obs: Bayesian inference dep. strongly on the prior probability



Brute force MAP/ML hypothesis
learner

1. For each hypothesis h in H, calculate the
posterior probability
P(D|h)P(h)
P(D)

2. Output the hypothesis Ay 4p with the highest
posterior probability

P(h|D) =

h]\,jAP — argmax P(h|D)
he H

e Obs:

— Not practical for large H
— Standard for evaluating or justifying other learning algorithms



PART B

* Find most probable classification for x
given D and H



Bayes optimal classifier

 Pb. considered until now
— Given D and H, find most probable h

 Now consider this pb:

— Given D, H, and a new instance x, what is most probable
classification of x?

— Answer: most probable classif. = h(x), where h is most probable
for D (MAP)

— NOM

— BEST classifier takes advantage of ALL h!

— Ex.
« 3 possible h: P(h4|D)=.4, P(h,|D)=P(hs|D)=.3 = h, is MAP
« Assume for x: hq(x)=+, hy(x)=h3(x)=-
« What is most probable classification of x?



Bayes optimal classifier

* Most probable classif. of x is obt. by comb. the predictions of all h, weighted
by their posteriors (see formula, where V is the set of classes)

arg %1%)/( hEH P(v;|h;)P(h;|D)
* |nourex:
P(hi|D) = .4, P(—|h1) =0, P(+|hy)
P(hs|D) = .3, P(—|h2) =1, P(+|h2)
P(h3|D) = .3, P(—|h3) =1, P(+|hs)

1
0
0

therefore

h,eHd

P(—|h)P(hi|D) = .
w2y L (=) P(hil D)

> P(+|h)P(h;|D) = 4
6

and

argmax > P;lhi)P(hilD) = =

« OBS. MAP h; predicts + but Bayes optimal h (which uses theorem of total
probability) predicts -



OBS. on Bayes optimal classifier

NO classifier based on D and H can exceed the
performance of the Bayes optimal classifier

Bayes optimal is optimal but expensive = uses all h in H

Drawback — choose an H s.t. one CAN compute all
posteriors P(h;|D)=» this might reduce choice of H so
severely that other techniques using more powerful H
can do better job

Even so, offers a performance target for all Bayesian
classifiers



Gibbs classifier ( ‘91)

Randomly selects an h according to posteriors
P(h|D) (in practice use P(h))
Prediction made by h(x)

Surprisingly: E(errGibbs) <= 2*E(errBayesOptimal)
Apply Gibbs to VS with uniform distribution

— Pick any h

— Expected err is no worse than twice Bayes Optimal

— Not very good but you get a prediction model at O cost



Nailve Bayes classifier

« Simple, v. practical, widely used
— Diagnosis
— Text documents classification

« Based on Bayes rule + assumption of conditional
Independence

— Assumption often violated in practice
— Even, then, it usually works well

* Applies to learn MAP h for conj. of discrete
attributes



Classification using Bayes rule

* Given attribute values, what is most
probable class (value) of target variable?

UpAp — alginax P(’Uj|a,1, a ... CLn) Bayes rule
v;eV l
P 5. .. AP(v;
VAP = argmax (01,02 .- an|V;) P(v;)
v;eV P(al, as ... a,n)
= argmax P(ay,as...a,|v;)P(v;)
’UjEV l

* Pb.: large data set needed to estimate
P(a,...a,|v))



Nailve Bayes classifier

* Nalve Bayes assumption: attributes are
Independent, given the class

—=> P(ay...a,|v)=P(a4|v)) P(azlv)) ... P(a,lv))

» Under this assumption =» vyp IS:

vyp = argmax P(v;) H P(a;|v;)
viEV



Naive Bayes algorithm

Naive_Bayes_Learn(examples)

For each target value v;

~

P(v;) ¢ estimate P(v;)
For each attribute value a; of each attribute a
P(a;|v;) + estimate P(a;|v;)

Classify_New _Instance(x)

VNB = argmaxf?(’vj) M Plalv))
’UjEV a;€r !



Naive Bayes: estimation

» Estimate probability from sample
proportion
— P(v) = count(v)/N
— P(A|B)= count(A and B)/count(B)

e Ex.: N =100 with 70+ and 30-
— P(+)=0.7 and P(-)=0.3

— Among 70 pos. ex., 35 with a;=SUNNY =>»
P(a;=SUNNY|+)=0.5



Training examples for PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10  Rain Mild Normal Weak Yes
D11  Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes
D14  Rain Mild High  Strong No




Naive Bayes: example

Consider new instance
<Outlook=sun, Temp=cool, Humid=high, Wind=strong>

Use NB to classify it: ‘'yes’ or ‘no’ ?

Compute vNB—argmaxP(vJ)H (a;i|v))

vieV

P(yes)=?, P(no)="

U U

stro
sun

U

(
(sun
(
(

yes) ?P (cool|yes)=? P(high|yes)=?
nglyes)=7

noj)=" ...



Naive Bayes: example

Consider PlayTennis again, and new instance
(Outlk = sun, Temp = cool, Humid = high, Wind = strong
Want to compute:

o = angmax P(u,) 1 P(a )
VeV L

P(y) P(sunly) P(cool|y) P(highl|y) P(strong|y) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

— UNB =T




Nalve Bayes: subtleties

Estimating probabilities is the major challenge
Conditional independence assumption is often violated

..but it works surprisingly well anyway

What if attribute a; never observed for class v; (due to
small tr. set)?

— => estimate P(aj|v;) as 0 because count(a; and v;)=0

— Effect too strong = gives 0 to candidacy of v,

— Sol.: use m-estimate smoothing
ne+mp
n+m

P(ailvy) <
where

e . is number of training examples for which
U = vy,

e . number of examples for which v = v; and
a = a;

e p is prior estimate for P(ai\vj)

e m is weight given to prior (i.e. number of
“virtual” examples)



EX.: m-estimate smoothing

« 70+, 30-
« P(a1=s|+)=0/70=0
O+10*;
. ' - ' = = =0.04
Using m-estimate = P(a1=s|+) 70+10

— 10 = no of virtual ex.

— 1/3 = there are 3 possible values for a1 having
uniform distribution



EX.: m-estimate smoothing

P(a1=s|+) = .31 (is TRUE probability; ~ 2 out of 6 +ves have a1=s)
Assume that in tr. data only 1 ex. (out of 6 ex.) in +ve class has al=s

To deal with distortion of probab. when dealing with small tr. sets >
use m-estimate 1

1+50%—

= P(al=s|+) = 3 =0.294
6+ 50

— 50 = no of virtual ex.
— 1/3 = there are 3 possible values for a1 having uniform distribution



Obs. on m-estimate smoothing

In previous ex., one can use more than 50 virtual ex. to get
even closer to .31

BUT, actual probab. value (here .31) is unknown!

M-estimate only improves the estimate of an unknown
probability when dealing with small data sample

m = 0 = m-estimate = n/n (=1/6 - original estimate!)
m->~ = m-estimate = p (=1/3 - prior estimate P(a1=s|+))
Instead of using formula - pick a value for P(a1=s|+) from
intervals [n//n,p) or (p,n/n] (whichever is non-empty)

With no additional info - pick (n./n + p)/2) as compromise
between observed probab. and assumed prior probab.



Nailve Bayes classifier for text

e EX.

— Learn which new articles are of interest
— Learn to classify web pages by topic

 NB works well
— How to apply NB?
— How do we represent ex.?
— What are the attributes?



Representation for text

classification
 Attributes = word positions
— |.e. attribute 1 = i-th word in text

— Values for attribute = word that occurs there
— doc=(a=wW4,...,a,=W,)

— Can chose other repres.: attr=specific word, value=its
freq. in text

« Assumption: probab. of having a specific word is
independent of position

— P(ai=w|v))=P(an=w|v;)=P(w|v;)
— P(dOCle)=P(a1=W1, do>=Wo,..., an=Wn|Vj)=
=P(W1 |Vj)freq(w1) - _P(Wnlvj)freq(wn)



Twenty newsgroups (Jochims’ 96)

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball
comp.windows.x rec.sport.hockey

alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics

talk.politics.mideast sci.med
talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy

20 classes

1000 docs for each class

2/3 - training; 1/3 - test
Used 100 most frequent words

Remove
— the, and, of, ...

— any word occurring fewer than 3
times

Resulting vocabulary ~ 38,500
words

Random guessing 2 5% accuracy



Algorithm

LEARN_NAIVE_BAYES_TEXT(Ezamples, V')

1. collect all words and other tokens that occur in
Examples

e Vocabulary <+ all distinct words and other
tokens in Examples

2. calculate the required P(v;) and P(wy|v;)
probability terms

e For each target value v; in V' do

—docsj < subset of Examples for which the
target value is v;

B P(’U,‘) o |docs |

|Examples|
—Text; < a single document created by
concatenating all members of docs;

—n < total number of words in Text; (counting
duplicate words multiple times)

— for each word w;. in Vocabulary

x nj. < number of times word w;. occurs in
Text;

% P(’LU],_—|’UJ') — njt1

n+|Vocabulary|

vyp = argmax P(v;) l—[ P(a;|v;)

v €V i€positions



Learning curve for 20 newsgroups
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Bayesian Belief Networks

« Consider two extremes

— Bayes Optimal Classifier — get correct joint probability distribution
« = optimal classifier

« But infeasible in practice (too much data needed)
— Nalve Bayes
* Much more feasible
« But strong (and restrictive) assumption of cond. independence

« Something in between?

— = make some independence assumptions but only where
reasonable?

— => BBN describe conditional independence among subsets of
variables

— BBN is a compromise between BOC and NB



Bayesian Belief Networks

Def. BBN is directed acyclic graph (nodes + arcs) +
conditional probability table for each node

Represent the joint probability distribution of the
variables (=all cond. probab. among variables)

Use the concept of conditional independence
— P(A1|A2,V) = P(A1|V)
A1 and A2 are conditional independent given V

« = even though A1 and A2 may influence each other, the fact that V
is true, completely explains that

« E.g. Campfire is cond. indep. of Lightning given Storm



Bayesian Belief Networks

BusTourGroup

SB S,—B —~SB —S5—-B
C 04 0.1 0.8 0.2

—C 06 09 02 0.8

Network represents a set of conditional
independence assertions:

e Fach node is asserted to be conditionally
independent of its nondescendants, given its
immediate predecessors.

e Directed acyclic graph



Cond. indep. and joint probab.

SB S—B —SB —S—B
C 04 0.1 0.8 0.2
-C 06 09 02 0.8
mpfire

Node v is cond. indep. of nhode na (not an ancestor of v) given its immediate ancestors
atl,...,an

— P(v|na,at,...,an)=P(v]a1,...,an)

— P(ForestFire|Thunder, Storm, Lightening, Campfire) = P(ForestFire|Storm, Lightening, Campfire)

Chain rule of probability describes the joint probability of a set of variables
- P(Xq,....%,) =[] P(XilX4,...,Xi1)
—  P(X4,%2,%3) = P(X4) P(Xz|Xx1) P(X3]%4,X;)

In BBN - probab. of immediate ancestors of node xi completely det. the joint probab.
distrib. for xi

—  P(x1,...,xn) = []; P(xi|parents(xi))

— Ex.P(S,B,L,C,T,F)=7?



BBN example

TS
TS y n
y n Martin late Norman late y > 08 0.1
y>0.6 0. n->02 09

n->04 0.5

« A) Compute unconditional (marginal) probability
— P(NL=y) = P(NL=y | TS=y) * P(TS=y) + P(NL=y | TS=n) * P(TS=n) = 0.17
— P(ML=y) = ? (0.51)

« B) Revising probabilities when propagating evidence
— Weknow TS =y
« P(NL=y)=P(NL=y | TS=y) *P(TS=y)+0=0.8*1+0=0.8
« P(ML=y) =7 (0.6)

— Weknow NL =y
- P(TS=y)=7?
— =P(TS=y | NL=y) =[ P(NL=y | TS=y) * P(TS=y) ]/ P(NL=y) =0.8 *0.1/0.17 = 0.47
— Obs. The evidence NL=y increased the probab. that TS=y!!!
. P(ML=y)=?
— =P(ML=y | TS=y) * P(TS=y) + P(ML=y | TS=n) * P(TS=n) = 0.6 * 0.47 + 0.5 *0.53 = 0.55
— Obs. The evidence NL=y propagated to ML and slightly increased the probab. that ML=y!!!



