
Ch4. Artificial Neural Networks
4.1 - 4.7

S. Visa

Biological neural systems
• Each neuron has

– Soma = cell body
– Dendrites = multiple inputs
– Axon = output

• Synapse
– Connects an axon to a dendrite
– Might increase (excite) or decrease (inhibit) a signal
– When input signal sufficiently strong à neuron fires (= propagates signal)

• No. of neurons in human brain ~ 1010

• Connections per neuron ~ 104

• Face recognition ~ 0.1 sec

• Neuron switching time ~10-3 sec

• Highly parallel & distributed processing

Artificial neural networks (ANN)
• Consist of

– Units
– Connections
– Weights

• Learn to associate inputs to
outputs by tuning the
weights

• E.g.
– Input = pixels of photo
– Output = classification of

photo (landscape?, car?,…)

• Highly parallel & distributed
processing

Biological NN Artificial NN

Soma Unit
Axon, dendrite Connection
Synapses Weights
Threshold Bias

Signal Activation
function

Ex. – ALVINN [Pomerleau 1989]
drives 70mph on highway

Autonomous Land Vehicle in a Neural Net

Perceptron
• Simplest NN à simulates 1 neuron
• o(x)=sign ()å =

×
n

i ii xw
0

x1

x2

xn

1

f(x)

w1

w2

wn

b

Axon

Synapses

Activation
of other
neurons Dendrites

Cell potential

Activation function

()å =
×

n

i ii xwsign
0

Linear decision boundary
hyperplane

x1

x2

-0.5
0

0.5
-0.50

0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X1X2

X
3

x1x2

x3

Non-linear decision boundary

x1

x2

-0.5

0

0.5

-0.5

0

0.5
-0.5

0

0.5

Hs.128749Hs.234680

H
s.
77
80

x1
x2

x3

• Hyperplane (“line”) in an n-dimensional space

• Find a Perceptron to solve the AND pb. for two inputs x1,
x2 à wi=?

• Functions not linearly separable (e.g. XOR) à not
representable with only one neuron è use more
neurons è neural network (NN)

Perceptron – decision surface

Perceptron – learning rule

• If o correct (t = o)è weights wi are not changed

• If o incorrect (t = o)è weights wi are changed s.t o is closer to t

• Algorithm converges to correct classification if
– Training data is linearly separable
– Learning rate is sufficiently small

Gradient descent – learning rule
• Consider perceptron without threshold (i.e. no sign(o))

and continuous outputs o (not just 1, -1)

• Train wi s.t. they min the squared err (LMS-least mean
squared error)

 where D is the set of training data

Gradient descent
• = steepest descent rule = delta

rule = LMS rule = Widrow-Hoff
 rule

• Name “delta rule” (Widrow-Hoff
rule) comes from

• Finds local minima by taking
steps opposite to the gradient

• Gradient = vector with the
greatest rate of increase

• Small learning rate à
algorithm converges

Gradient descent

Gradient descent illustration

You might miss the global minima on
error surface.

Perceptron algorithm
• Ip: tr. ex., η

– Each tr. ex is a pair <(x1,…, xn), t>
• Op: w

1. w init. with small random values
2. Until termination cond. met do

1. each Δwi = 0
2. For each tr. ex. <(x1,…, xn), t> do

1. Input the instance (x1,…, xn) to the neuron and compute o
2. For each wi do

Δwi = Δwi + η(t-o)xi %accumulates change from each tr.ex
3. For each wi do % o(sign(w*x)), uses sign fct

wi = wi + Δwi %update w only once à batch mode

Gradient descent

Gradient descent - conclusions
• Finds a solution that minimizes the error

è works also for non-linearly separable data (unlike perceptron!)
è tolerates noisy data

• Local minima (= minimum error) obt. by taking steps opposite to
the gradient

• Small learning rate à algorithm converges

• Weaknesses
– Slow convergence
– If not small enough learning rate à might miss the min

• Limitations for both perceptron and gradient descent
– Solve only a small class of pb.
– à Combine many neurons in a network

Multilayer networks

• Increase representation power

Sigmoid unit
• Graph σ

x=(-10:0.1:10);
y=1./(1+(2.71).^(-x));

plot(x,y);

• Can you understand
why is called
squashing function?

• aka. logistic function

Sigmoid unit
• Causes non-linear decision surface

• Very powerful representation

• OBS. Multiple layers of linear units still produce only
linear functions è use non-linear activation fct.

Examples of NN and 1-to-
N encoding

1) If using sigmoid activation fct. è output
in [0,1]

2) What is the difference between using 1
vs 2 output neurons?
Assume, a 2-class classification problem.
It is easier to learn outputs
[1 0] as class 1
[0 1] as class 2

3) For 3-class classification this is even
more obvious:
[1 0 0] is output for class 1, etc.

4) Explain what happens in neuron h2?
What is the input? What is the output?
Write the math/answer on your notebook.

5) Ex. of 1-to-N
Data with Class label =
[data1 2
 data2 3
 data3 1
 data4 3
 …]

Class label encoded =
[0 1 0
 0 0 1
 1 0 0
 0 0 1
 …]

Examples of NN

Multilayer NN with sigmoid units
• Speech recognition
• Data from spectral analysis of the sound
• 10 outputs

Backpropagation algorithm

Obs. 1 Steps 2, 3 and 4 propagate
the err backward through NN

Obs. 2 Initial w near zero à init.
net near-linear (see logistic fct.
around 0) à increasingly non-
linear functions possible as
training progresses

Backpropagation illustration

NN for classifying hand-written digits

NN notations

Bias in Backpropagation FNN
• Mitchel: interpolates two pos. ex. that do not have a intervening negative,

with a pos.

• Net topology chosen by trainer
– # of layers
– # of neurons
– transfer fct.
1. many hidden layers and neurons

à powerful net
à can approx. many hypotheses
à weak inductive bias à poor generalization

2. smaller hidden layers and neurons
à weak net
à can approx. fewer hypotheses
à stronger inductive bias
à PREFFERED: an h that approx. well t from training has higher probability of well

approx. the actual (TRUE) t

• GOAL: find the weakest topology to learn the training data à strongest
inductive bias à best generalization

Overfitting in Backpropagation FNN
• “memorize” training data, but cannot generalize

• Choice of too powerful a net provides with excessive #
of h, thus making available h that fit tr. data but do not
match t well

• May use a powerful net + add some bias
– weight-decay

• adds bias by decreasing all w by a small amount at each iteration
à non-reinforced weights get smaller

– k-cross validation
• split tr. data in k subsets, train k different nets by using one of the k

parts for test and remaining k-1 for training à select the net that
generalizes best

• OBS. More than 1 or 2 layers on neurons leads to
overfitting

More about overfitting
• Tr. data is not representative of

general distribution of examples

• After many iterations,
Backpropagation will create
overly complex dec. surface
that fits noise

• Solution:
– Use validation set
– k-cross validation (if little data)

• One can discover the best net
at unpredictable time (keep a
running w of min err), e.g. top
figure shows best net at
epoch~9000

Backpropagation algorithm
• Gradient descent over entire network weight vector

• Min error over training ex.

• Finds local (not always global) min – err surface has multiple local
min!!

• However, in practice works well – run it multiple times with different
random initial weights

• Slow training (1,000 – 10,000 iterations using same tr. examples)

• Using net after training is fast

• Can overfitt

Representation power of FFNN
• Every boolean fct. can be repres. by a NN with

one hidden layer (input x hidden x output è2
layers in total)

• NN with one hidden layer (input x hidden x
output è 2 layers in total) can approximate ANY
continuous function (Cybenko’89, Hornik’89)

• NN with two hidden layers (input x hidden x
hidden x output è 3 layers in total) can
approximate ANY function (Cybenko’88)

Ex.1 8-3-8 Binary encoder -
decoder

• Hidden layer representation

àessential info from 8 ip. captured
by 3 learned hidden units

àability to invent features not
explicitly introduced by humans

Training

• Sum of squared err for the 8 output units

Training
• Hidden unit encoding for the 3 hidden

units

Training

• 9 weights from 8 ip. to 1 hidden unit

Ex.2 NN for face recognition
• Data

– 624 greyscale images 120x128
– Pixel intensity 0-255

• Task
– predict forward, left, right, up

• Net
– Ip: 30x32 pixel intensities
– Op: 4 nodes

(1-of-n op. coding) e.g.
(.1,.1,.9,.1)

– One hidden layer: 3 nodes
– Tr. Time: 5 min to achieve 90%

acc. (vs. 60 min for 30 hidden
nodes which performs just
slightly better (~92%))

Ex.2 NN for face recognition
• Weights into the

three hidden layer
nodes after 100
epochs

• Weights from image
pixels into each
hidden unit, plotted
in the pos. of the
corresp. pixel

Resources
• NN for Pattern Recognition, Bishop C.M., 1996

• Stuttgart NN Simulator (SNNS)
http://www.ra.cs.uni-tuebingen.de/SNNS/

• NN for face recognition
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitche

ll/ftp/faces.html

http://www.ra.cs.uni-tuebingen.de/SNNS/
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

