Ch4. Artificial Neural Networks
4.1-4.7

S. Visa

Biological neural systems

Each neuron has
— Soma = cell body
— Dendrites = multiple inputs
— Axon = output

Synapse
— Connects an axon to a dendrite
— Might increase (excite) or decrease (inhibit) a signal
— When input signal sufficiently strong = neuron fires (= propagates signal)

No. of neurons in human brain ~ 1010
Connections per neuron ~ 104

Face recognition ~ 0.1 sec

Neuron switching time ~10-3 sec

Highly parallel & distributed processing

Artificial neural networks (ANN)

. Consist of Biological NN Artificial NN
— Units :
— Connections Soma Unit
~ Weights Axon, dendrite | Connection
« Learn to associate inputs to |Synapses Weights
outputs by tuning the .
weights Threshold Bias
. Eg. Signal Activation
— Input = pixels of photo function

— Output = classification of
photo (landscape?, car?,...)

« Highly parallel & distributed
processing

Ex. — ALVINN [Pomerleau 1989]

30 Output
Units

30x32 Sensor
Input Retina

Autonomous Land Vehicle in a Neural Net

Perceptron

« Simplest NN - simulates 1 neuron
* o(x)=sign(y,»-x)

1ifw-£2>0 .
¥) = Cell potential
o(Z) {—1 otherwise. X, p \
X2
f(x) ,
/ Axon
Activation Xn Activation function
of other |
neurons 1 \ Dendrites

Synapses

AN % & .
\ * 02*~ ' °
N ** 5 01 m o o
o, T
\\O* w X3 KO % |
04| Y NN AN
oh w ¥ N
(o) O\\\ 0.3 : |
0o 0 N b B | |

Linear decision boundary

hyperplane

Non-linear decision boundary

w
%
~ e = w
S % g
o S
o
) * 4
®) \ﬁ o
(@) \—‘s*
O ~
(@) o N
Oo o

Perceptron — decision surface

» Hyperplane (“line”) in an n-dimensional space

* Find a Perceptron to solve the AND pb. for two inputs x4,
Xo 2 W=7

* Functions not linearly separable (e.g. XOR) = not
representable with only one neuron =» use more
neurons =» neural network (NN)

Perceptron — learning rule

wW; < W; + Awl

where
Aw; = n(t — o)z;

Where:
o t = ¢(Z) is target value
e 0 1s perceptron output

e 17 is small constant (e.g., .1) called learning rate
« |If o correct (t = 0)=» weights w;are not changed
« Ifoincorrect (t = 0)=» weights w;are changed s.t o is closer to t

« Algorithm converges to correct classification if
— Training data is linearly separable
— Learning rate is sufficiently small

Gradient descent — learning rule

Consider perceptron without threshold Si.e. no sign(o))
and continuous outputs o (not just 1, -1

Train w, s.t. they min the squared err (LMS-least mean
squared error)

. 1
E[w] — 5 ng(td — Od)2

where D is the set of training data

Gradient descent

= steepest descent rule = delta =
rule = LMS rule = Widrow-Hoff
rule

Name “delta rule” (Widrow-Hoff
rule) comes from

Aw; =n(t — o)x;

: . _ Gradient

Finds local minima by taking . OFE OFE OF
steps opposite to the gradient VE[W] = 5 B B

0 1 n

_ _ Training rule:
Gradient = vector with the . .
greatest rate of increase Aw = —nV E|w]
1.e.,

Small learning rate - Aw; = _na_E
algorithm converges | dw;

Gradient descent

1
ElWw) =< X (tq — 04)
2 deD
25 aE
20 “‘ —
:, Ow;
Gradient
. _[0F OF Ok
VE['U)] - B’L:U(]J a’UJl’ B'w,,
Training rule:
AW = —nV E[w] E
le., 8_
Aw; = —na—E 311)@

8’LU,i

Gradient descent illustration

You might miss the global minima on
error surface.

Perceptron algorithm

 Ip: tr.ex.,n
— Each tr. ex is a pair <(x4,..., X,), t>
« Op:w

1. w init. with small random values

2. Until termination cond. met do
1. each Aw; =0

2. For each tr. ex. <(xy,..., X,), t>do
1. Input the instance (x;
2. For each w; do
Aw; = Aw; + Q(t-0)X%;
3. For each w; do
w; = w; + Aw,

..... X,) to the neuron and compute o

%accumulates change from each tr.ex

% o(sign(w*x)), uses sign fct
%update w only once - batch mode

Gradient descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w]
2. W 4 W — T)VED[”@]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D

1. Compute the gradient V E;[w]
2. +— W — nVEd[tﬁ]

Gradient descent - conclusions

Finds a solution that minimizes the error
=>» works also for non-linearly separable data (unlike perceptron!)
=» tolerates noisy data

Local minima (= minimum error) obt. by taking steps opposite to
the gradient

Small learning rate - algorithm converges

Weaknesses
— Slow convergence
— If not small enough learning rate - might miss the min

Limitations for both perceptron and gradient descent
— Solve only a small class of pb.
— -2 Combine many neurons in a network

Multilayer networks

* Increase representation power

+
N
output layer I > 1 output
l >
hidden layer \T AL
+ 1
\ //
1 . 1
inputs AN

X Y neuron 1 neuron 2

Sigmoid unit

n
net= 2. w:x: |
et EEU Vit 0 = G(net) =

o(x) is the sigmoid function
1
1 + e %

Nice property: 22 = o(z)(1 — o(x))

dx
We can derive gradient decent rules to train

¢ One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

« Graph o

x=(-10:0.1:10);
y=1./(1+(2.71) .7 (-x));
plOt (x, Y) ’

« Can you understand
why is called
squashing function?

 aka. logistic function

Sigmoid unit
e (Causes non-linear decision surface

* Very powerful representation

« OBS. Multiple layers of linear units still produce only
linear functions =» use non-linear activation fct.

b1.35 b2 .60

1) If using sigmoid activation fct. = output
in [0,1]

2) What is the difference between using 1
vs 2 output neurons?

Assume, a 2-class classification problem.
It is easier to learn outputs

[1 0] as class 1

[0 1] as class 2

3) For 3-class classification this is even
more obvious:
[1 0 0] is output for class 1, etc.

4) Explain what happens in neuron h2?
What is the input? What is the output?
Write the math/answer on your notebook.

Examples of NN and 1-to-

N encoding

5) Ex. of 1-to-N

Data with Class label =
[data1 2

data2 3

data3 1

datad4 3

]

Class label encoded =
[0 10
001
100
001

TGS2602

Examples of NN

O—
°§}"~{{“\\//
34‘31’/@%9 X 9
PR
)
Va0 AS

Input Layer Hidden Layer 1

Multilayer NN with sigmoid units

Speech recognition
Data from spectral analysis of the sound
* 10 outputs

head hid A whod hood

ooooo

Backpropagation algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit £
O O,g-(l — O,L;)(tk — Ok)
3. For each hidden unit h
O 4= on(1 — on) k@%}m Wiidk Qg 1 Steps 2, 3 and 4 propagate
the err backward through NN
4. Update each network weight w; g
w; < w;j+ Aw; Obs. 2 Initial w near zero - init.
‘ net near-linear (see logistic fct.
where around 0) - increasingly non-

linear functions possible as

i,j = 105 training progresses

Backpropagation illustration

input y

AE
output
./W‘Bc '\, error
° Wse @ WEF/

Data propagation direction —

NS ZoS

W, RSGNITIN
SXHOKEL ~ 5
,/A.f‘?ﬁ /."’\\9‘ S O

— V"‘" LA X

PR

NN for classifying hand-written digits

784 input 1. Forward propagation
Neurons

300 hidden 10 output 2. Compare to
Neurons Neurons correct output

yi—c1 4—’

y2-c2

Actual output

28x28 pixel Y9 —Co
MNIST images

Ol i1]i2liz/ify Q) vo-e
si¢|inliglfey

3. Back-propagation

Bias in Backpropagation FNN

« Mitchel: interpolates two pos. ex. that do not have a intervening negative,
with a pos.

 Net topology chosen by trainer
— # of layers
— # of neurons
— transfer fct.

1. many hidden layers and neurons
- powerful net
—> can approx. many hypotheses
- weak inductive bias = poor generalization
2. smaller hidden layers and neurons
weak net
can approx. fewer hypotheses
stronger inductive bias

PREFFERED: an h that approx. well t from training has higher probability of well
approx. the actual (TRUE) t

N2 28 20\ Z

« GOAL.: find the weakest topology to learn the training data - strongest
inductive bias = best generalization

Overfitting in Backpropagation FNN

* “memorize” training data, but cannot generalize

* Choice of too powerful a net provides with excessive #
of h, thus making available h that fit tr. data but do not
match t well

* May use a powerful net + add some bias
— weight-decay

« adds bias by decreasing all w by a small amount at each iteration
- non-reinforced weights get smaller

— k-cross validation

« split tr. data in k subsets, train k different nets by using one of the k
parts for test and remaining k-1 for training = select the net that
generalizes best

« OBS. More than 1 or 2 layers on neurons leads to
overfitting

More about overfitting

Tr. data is not representative of
general distribution of examples

After many iterations,

Backpropagation will create g
overly complex dec. surface
that fits noise
Solution:

— Use validation set

— k-cross validation (if little data)
One can discover the best net
at unpredictable time (keep a i
running w of min err), e.g. top =

figure shows best net at
epoch~9000

Error versus weight updates (example 1)
0.01 . T 1
N -
0.009 . Training set error
- Validation set error
0.008 [4
0.007 . _
+
| W
0.005 r i
0.004 r 4
0.003 4
0.002 ' ' '
0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)

0.08 “’N.‘ T T T
007 F ° Training set error -

Validation set error
006 | -

&,
0.05 r . i
0.04 F . -
*
003 f 7
*
0.02 F % .
.0
0.01 ’o\.m“ -
0 1 0000000000000000000004500044 044
0 1000 2000 3000 4000 5000 6000

Number of weight updates

Backpropagation algorithm

Gradient descent over entire network weight vector
Min error over training ex.

Finds local (not always global) min — err surface has multiple local
min!!

However, in practice works well — run it multiple times with different
random initial weights

Slow training (1,000 — 10,000 iterations using same tr. examples)
Using net after training is fast

Can overfitt

Representation power of FFNN

* Every boolean fct. can be repres. by a NN with
one hidden layer (input x hidden x output =2
layers in total)

* NN with one hidden layer (input x hidden x
output =» 2 layers in total) can approximate ANY
continuous function (Cybenko’'89, Hornik’'89)

* NN with two hidden layers (input x hidden x
hidden x output = 3 layers in total) can
approximate ANY function (Cybenko’88)

Ex.1 8-3-8 Binary encoder -
decoder

* Hidden layer representation

—>essential info from 8 ip. captured
by 3 learned hidden units

—>ability to invent features not

explicitly introduced by humans
A target function: plicitly y

Input Output Learned hidden layer representation:
10000000 — 10000000 fnput Hidden Output
Values
01000000 — 01000000 10000000 — .89 .04 .08 — 10000000
00100000 — 00100000 01000000 — .01 .11 .88 — 01000000
00010000 — 00010000 00100000 — .01 .97 .27 — 00100000
00001000 — 00001000 00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — 00000100 00000100 — .22 .99 .99 — 00000100
00000010 — 00000010 00000010 — .80 .01 .98 — 00000010
00000001 — 00000001 00000001 — .60 .94 .01 — 00000001

Can this be learned??

Training

« Sum of squared err for the 8 output units

Sum of squared errors for each output unit

0.9
0.8 o N \

I Lo \ \
v vy ‘. \
0.5 A AR
= IR oo \ \ N
e (T Vo 4 \
(-) Lood \
o o Y \
L O \
y 1o ' P \
(} 4 - o Vak -
. o Loy N
N ' ' "
1} \ \ I.I ll '\
(. I. o " ".\‘ -\ \
)3 - o SAAREEEAN . -
‘e \ .

oo
) L T \
\ T 5,
' W L . 5
! A '.] . A\
| LY P N g
O 2 . . AR o . N -
] = " - ~
. \ \-' - - - \. - ~
. Y T s \ . -
B " - . T -

0.1 F IS NS \\ TR | HM————___]

0 | | — q. SSiTan T s
0 500 1000 1500 2000 2500

Training

» Hidden unit encoding for the 3 hidden
units

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

I I ' = ———I'-—---~_-_--_-_-_-_‘;; ;;;;
—— = i
B —
-
P
-~
-
// .
- r
s ’
- / , |
« ’
B 4
r/ .
,
;
/’ i
- B , |
“ '
-
-~ ’
('/ ’
_d"'" F3
i - ’
ety) 1
;
%, #
% ,
v -
- . P |
B —
T
HHH\E
Rk
| 1 I I

0

500 1000 1500 2000

2500

Training

* 9 weights from 8 ip. to 1 hidden unit

Weights from inputs to one hidden unit

Llh -llb- QIJJ II\J 'I—‘ o —_ [~ [y =~
T T T T T T T
)
{
{
|
|
|

500 1000 1500 2000 2500

o

Ex.2 NN for face recognition

« Data
— 624 greyscale images 120x128

— Pixel intensity 0-255

 Task left strt rght up
— predict forward, left, right, up NN A
* Net
— Ip: 30x32 pixel intensities
— Op: 4 nodes
(1-of-n op. coding) e.g.
(.1,.1,.9,.1)

— One hidden layer: 3 nodes

— Tr. Time: 5 min to achieve 90%
acc. (vs. 60 min for 30 hidden
nodes which performs just
slightly better (~92%))

Typical input images

Ex.2 NN for face recognition

* Weights into the
three hidden layer
nodes after 100
epochs

left strt rght up Learned Weights

* Weights from image
pixels into each

hidden unit, plotted nn
in the pos. of the P L
COrreSp p|Xe| Typical input images

http://www.cs.cmu.edu/~tom /faces.html

Resources

* NN for Pattern Recognition, Bishop C.M., 1996

o Stuttgart NN Simulator (SNNS)
http://www.ra.cs.uni-tuebingen.de/SNNS/

* NN for face recognition

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitche
|l/ftp/faces.html

http://www.ra.cs.uni-tuebingen.de/SNNS/
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

