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S. Visa



Biological neural systems
• Each neuron has 

– Soma = cell body
– Dendrites = multiple inputs
– Axon = output

• Synapse 
– Connects an axon to a dendrite
– Might increase (excite) or decrease (inhibit) a signal
– When input signal sufficiently strong à neuron fires ( = propagates signal)

• No. of neurons in human brain ~ 1010

• Connections per neuron ~ 104

• Face recognition ~ 0.1 sec

• Neuron switching time ~10-3 sec

• Highly parallel & distributed processing



Artificial neural networks (ANN)
• Consist of

– Units
– Connections
– Weights

• Learn to associate inputs to 
outputs by tuning the 
weights

• E.g.
– Input = pixels of photo
– Output = classification of 

photo (landscape?, car?,…) 

• Highly parallel & distributed 
processing

Biological NN Artificial NN

Soma Unit
Axon, dendrite Connection
Synapses Weights
Threshold Bias

Signal Activation 
function



Ex. – ALVINN [Pomerleau 1989] 
drives 70mph on highway

Autonomous Land Vehicle in a Neural Net 



Perceptron
• Simplest NN à simulates 1 neuron
• o(x)=sign  ( )å =
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Linear decision boundary
hyperplane
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Non-linear decision boundary
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• Hyperplane (“line”) in an n-dimensional space

• Find a Perceptron to solve the AND pb. for two inputs x1, 
x2 à wi=?

• Functions not linearly separable (e.g. XOR) à not 
representable with only one neuron è use more 
neurons è neural network (NN)

Perceptron – decision surface



Perceptron – learning rule

• If o correct (t = o)è weights wi are not changed

• If o incorrect (t = o)è weights wi are changed s.t o is closer to t

• Algorithm converges to correct classification if
– Training data is linearly separable
– Learning rate is sufficiently small



Gradient descent – learning rule
• Consider perceptron without threshold (i.e. no sign(o)) 

and continuous outputs o (not just 1, -1)

• Train wi s.t. they min the squared err (LMS-least mean 
squared error)

      
 
 where D is the set of training data



Gradient descent
• = steepest descent rule = delta 

rule = LMS rule = Widrow-Hoff
 rule

• Name “delta rule” (Widrow-Hoff 
rule) comes from

• Finds local minima by taking 
steps opposite to the gradient

• Gradient = vector with the 
greatest rate of increase

• Small learning rate à 
algorithm converges



Gradient descent



Gradient descent illustration

You might miss the global minima on 
error surface.



Perceptron algorithm
• Ip:   tr. ex., η

– Each tr. ex is a pair <(x1,…, xn), t>
• Op: w

1. w init. with small random values
2. Until termination cond. met do

1. each Δwi = 0
2. For each tr. ex. <(x1,…, xn), t> do

1. Input the instance (x1,…, xn) to the neuron and compute o
2. For each wi do

Δwi = Δwi + η(t-o)xi %accumulates change from each tr.ex
3. For each wi do     % o(sign(w*x)), uses sign fct

wi = wi + Δwi                                %update w only once à batch mode



Gradient descent



Gradient descent - conclusions
• Finds a solution that minimizes the error 

è works also for non-linearly separable data (unlike perceptron!)
è tolerates noisy data

• Local minima ( = minimum error) obt. by taking steps opposite to 
the gradient

• Small learning rate à algorithm converges

• Weaknesses
– Slow convergence
– If not small enough learning rate à might miss the min 

• Limitations for both perceptron and gradient descent
– Solve only a small class of pb.
– à Combine many neurons in a network



Multilayer networks

• Increase representation power



Sigmoid unit
• Graph σ

x=(-10:0.1:10);
y=1./(1+(2.71).^(-x));

plot(x,y);

• Can you understand 
why is called 
squashing function?

• aka. logistic function



Sigmoid unit
• Causes non-linear decision surface

• Very powerful representation

• OBS. Multiple layers of linear units still produce only 
linear functions è use non-linear activation fct.



Examples of NN and 1-to-
N encoding

1) If using sigmoid activation fct. è output 
in [0,1]

2) What is the difference between using 1 
vs 2 output neurons?
Assume, a 2-class classification problem. 
It is easier to learn outputs 
[1 0] as class 1
[0 1] as class 2 

3) For 3-class classification this is even 
more obvious:
[1 0 0] is output for class 1, etc.

4) Explain what happens in neuron h2? 
What is the input? What is the output? 
Write the math/answer on your notebook.

5) Ex. of 1-to-N
Data with Class label =
[data1 2
 data2 3
 data3 1
 data4 3
           …]

Class label encoded =
[0  1 0 
 0  0 1
 1  0 0
 0  0 1
      …]



Examples of NN



Multilayer NN with sigmoid units
• Speech recognition
• Data from spectral analysis of the sound
• 10 outputs



Backpropagation algorithm

Obs. 1 Steps 2, 3 and 4 propagate 
the err backward through NN

Obs. 2 Initial w near zero à init. 
net near-linear (see logistic fct. 
around 0) à increasingly non-
linear functions possible as 
training progresses 



Backpropagation illustration



NN for classifying hand-written digits



NN notations



Bias in Backpropagation FNN
• Mitchel: interpolates two pos. ex. that do not have a intervening negative, 

with a pos. 

• Net topology chosen by trainer 
– # of layers
– # of neurons
– transfer fct. 
1. many hidden layers and neurons 

à powerful net 
à can approx. many hypotheses
à weak inductive bias à poor generalization

2. smaller hidden layers and neurons 
à weak net 
à can approx. fewer hypotheses
à stronger inductive bias
à PREFFERED: an h that approx. well t from training has higher probability of well 

approx. the actual (TRUE) t

• GOAL: find the weakest topology to learn the training data à strongest 
inductive bias à best generalization



Overfitting in Backpropagation FNN
• “memorize” training data, but cannot generalize

• Choice of too powerful a net provides with excessive # 
of h, thus making available h that fit tr. data but do not 
match t well 

• May use a powerful net + add some bias
– weight-decay 

• adds bias by decreasing all w by a small amount at each iteration 
à non-reinforced weights get smaller

– k-cross validation 
• split tr. data in k subsets, train k different nets by using one of the k 

parts for test and remaining k-1 for training à select the net that 
generalizes best

• OBS. More than 1 or 2 layers on neurons leads to 
overfitting



More about overfitting
• Tr. data is not representative of 

general distribution of examples

• After many iterations, 
Backpropagation will create 
overly complex dec. surface 
that fits noise 

• Solution: 
– Use validation set
– k-cross validation (if little data)

• One can discover the best net 
at unpredictable time (keep a 
running w of min err), e.g. top 
figure shows best net at 
epoch~9000



Backpropagation algorithm
• Gradient descent over entire network weight vector

• Min error over training ex. 

• Finds local (not always global) min – err surface has multiple local 
min!!

• However, in practice works well – run it multiple times with different 
random initial weights

• Slow training (1,000 – 10,000 iterations using same tr. examples)

• Using net after training is fast

• Can overfitt



Representation power of FFNN
• Every boolean fct.  can be repres. by a NN with 

one hidden layer (input x hidden x output è2 
layers in total) 

• NN with one hidden layer (input x hidden x 
output è 2 layers in total) can approximate ANY 
continuous function (Cybenko’89, Hornik’89)

• NN with two hidden layers (input x hidden x 
hidden x output è 3 layers in total) can 
approximate ANY function (Cybenko’88)



Ex.1 8-3-8 Binary encoder - 
decoder

• Hidden layer representation

àessential info from 8 ip. captured 
by 3 learned hidden units

àability to invent features not 
explicitly introduced by humans



Training

• Sum of squared err for the 8 output units



Training
• Hidden unit encoding for the 3 hidden 

units



Training

• 9 weights from 8 ip. to 1 hidden unit 



Ex.2  NN for face recognition
• Data 

– 624 greyscale images 120x128
– Pixel intensity 0-255

• Task
– predict forward, left, right, up

• Net
– Ip: 30x32 pixel intensities
– Op: 4 nodes 

(1-of-n op. coding) e.g. 
(.1,.1,.9,.1)

– One hidden layer: 3 nodes
– Tr. Time: 5 min to achieve 90% 

acc. (vs. 60 min for 30 hidden 
nodes which performs just 
slightly better (~92%))



Ex.2  NN for face recognition
• Weights into the 

three hidden layer 
nodes after 100 
epochs

• Weights from image 
pixels into each 
hidden unit, plotted 
in the pos. of the 
corresp. pixel



Resources
• NN for Pattern Recognition, Bishop C.M., 1996

• Stuttgart NN Simulator (SNNS) 
http://www.ra.cs.uni-tuebingen.de/SNNS/

• NN for face recognition
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitche

ll/ftp/faces.html

http://www.ra.cs.uni-tuebingen.de/SNNS/
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

