Ch4. Artificial Neural Networks 4.1 - 4.7 S. Visa

Biological neural systems

- Each neuron has
 - Soma = cell body
 - Dendrites = multiple inputs
 - Axon = output
- Synapse
 - Connects an axon to a dendrite
 - Might increase (excite) or decrease (inhibit) a signal
 - When input signal sufficiently strong \rightarrow neuron fires (= propagates signal)
- No. of neurons in human brain $\sim 10^{10}$
- Connections per neuron ~ 10⁴
- Face recognition ~ 0.1 sec
- Neuron switching time $\sim 10^{-3}$ sec
- Highly parallel & distributed processing

Artificial neural networks (ANN)

- Consist of
 - Units
 - Connections
 - Weights
- Learn to associate inputs to outputs by tuning the weights
- E.g.
 - Input = pixels of photo
 - Output = classification of photo (landscape?, car?,...)
- Highly parallel & distributed processing

Biological NN	Artificial NN		
Soma	Unit		
Axon, dendrite	Connection		
Synapses	Weights		
Threshold	Bias		
Signal	Activation function		

Ex. – ALVINN [Pomerleau 1989] drives 70mph on highway

Autonomous Land Vehicle in a Neural Net

Perceptron

- Simplest NN \rightarrow simulates 1 neuron
- $o(\mathbf{x}) = \operatorname{sign}(\sum_{i=0}^{n} w_i \cdot x_i)$

Linear decision boundary

hyperplane

Non-linear decision boundary

X₁

Perceptron – decision surface

- Hyperplane ("line") in an n-dimensional space
- Find a Perceptron to solve the AND pb. for two inputs x_1 , $x_2 \rightarrow w_i$ =?
- Functions not linearly separable (e.g. XOR) → not representable with only one neuron → use more neurons → neural network (NN)

Perceptron – learning rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t-o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- $\bullet o$ is perceptron output
- η is small constant (e.g., .1) called *learning rate*
- If o correct (t = o) weights w_i are not changed
- If o incorrect (t = o) weights w_i are changed s.t o is closer to t
- Algorithm converges to correct classification if
 - Training data is linearly separable
 - Learning rate is sufficiently small

Gradient descent – learning rule

- Consider perceptron without threshold (i.e. no sign(o)) and continuous outputs o (not just 1, -1)
- Train w_i s.t. they min the squared err (LMS-least mean squared error)

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

where D is the set of training data

Gradient descent

- = steepest descent rule = delta rule = LMS rule = Widrow-Hoff rule
- Name "delta rule" (Widrow-Hoff rule) comes from

$$\Delta w_i = \eta (t - o) x_i$$

- Finds local minima by taking steps opposite to the gradient
- Gradient = vector with the greatest rate of increase
- Small learning rate → algorithm converges

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient descent

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\begin{aligned} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{aligned}$$

Gradient descent illustration

You might miss the global minima on error surface.

Perceptron algorithm

- Ip: tr. ex., η
 Each tr. ex is a pair <(x₁,..., x_n), t>
- Op: w
- 1. w init. with small random values
- 2. Until termination cond. met do
 - 1. each $\Delta w_i = 0$
 - 2. For each tr. ex. <($x_1, ..., x_n$), t> do
 - 1. Input the instance (x_1, \ldots, x_n) to the neuron and compute o
 - 2. For each w_i do
 - $\Delta w_i = \Delta w_i + \frac{\eta(t-o)x_i}{\eta(t-o)x_i}$
 - 3. For each w_i do $w_i = w_i + \Delta w_i$

%accumulates change from each tr.ex % O(sign(w*x)), uses sign fct %update w only once → batch mode

Gradient descent

Batch mode Gradient Descent: Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent: Do until satisfied

- \bullet For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$

2.
$$\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$$

Gradient descent - conclusions

- Finds a solution that minimizes the error
 - → works also for non-linearly separable data (unlike perceptron!)
 - ➔ tolerates noisy data
- Local minima (= minimum error) obt. by taking steps opposite to the gradient
- Small learning rate \rightarrow algorithm converges
- Weaknesses
 - Slow convergence
 - If not small enough learning rate \rightarrow might miss the min
- Limitations for both perceptron and gradient descent
 - Solve only a small class of pb.
 - \rightarrow Combine many neurons in a network

Multilayer networks

Increase representation power

Sigmoid unit

 $\sigma(x)$ is the sigmoid function

 $\frac{1}{1+e^{-x}}$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Graph σ

x=(-10:0.1:10); y=1./(1+(2.71).^(-x)); plot(x,y);

- Can you understand why is called squashing function?
- aka. logistic function

Sigmoid unit

- Causes non-linear decision surface
- Very powerful representation
- OBS. Multiple layers of linear units still produce only linear functions → use non-linear activation fct.

Examples of NN

Output Layer

Multilayer NN with sigmoid units

- Speech recognition
- Data from spectral analysis of the sound
- 10 outputs

Backpropagation algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit \boldsymbol{k}

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

Obs. 1 Steps 2, 3 and 4 propagate the err backward through NN

Obs. 2 Initial w near zero \rightarrow init. net near-linear (see logistic fct. around 0) \rightarrow increasingly nonlinear functions possible as training progresses

Backpropagation illustration

NN for classifying hand-written digits

NN notations

Bias in Backpropagation FNN

- Mitchel: interpolates two pos. ex. that do not have a intervening negative, with a pos.
- Net topology chosen by trainer
 - # of layers
 - # of neurons
 - transfer fct.
 - 1. many hidden layers and neurons
 - \rightarrow powerful net
 - \rightarrow can approx. many hypotheses
 - \rightarrow weak inductive bias \rightarrow poor generalization
 - 2. smaller hidden layers and neurons
 - → weak net
 - \rightarrow can approx. fewer hypotheses
 - \rightarrow stronger inductive bias
 - → PREFFERED: an h that approx. well t from training has higher probability of well approx. the actual (TRUE) t
- GOAL: find the weakest topology to learn the training data → strongest inductive bias → best generalization

Overfitting in Backpropagation FNN

- "memorize" training data, but cannot generalize
- Choice of too powerful a net provides with excessive # of h, thus making available h that fit tr. data but do not match t well
- May use a powerful net + add some bias
 - weight-decay
 - adds bias by decreasing all w by a small amount at each iteration
 → non-reinforced weights get smaller
 - k-cross validation
 - split tr. data in k subsets, train k different nets by using one of the k parts for test and remaining k-1 for training → select the net that generalizes best
- OBS. More than 1 or 2 layers on neurons leads to overfitting

More about overfitting

- Tr. data is not representative of general distribution of examples
- After many iterations, Backpropagation will create overly complex dec. surface that fits noise
- Solution:
 - Use validation set
 - k-cross validation (if little data)
- One can discover the best net at unpredictable time (keep a running w of min err), e.g. top figure shows best net at epoch~9000

Backpropagation algorithm

- Gradient descent over entire network weight vector
- Min error over training ex.
- Finds local (not always global) min err surface has multiple local min!!
- However, in practice works well run it multiple times with different random initial weights
- Slow training (1,000 10,000 iterations using same tr. examples)
- Using net after training is fast
- Can overfitt

Representation power of FFNN

- Every boolean fct. can be repres. by a NN with one hidden layer (input x hidden x output →2 layers in total)
- NN with one hidden layer (input x hidden x output
 2 layers in total) can approximate ANY continuous function (Cybenko'89, Hornik'89)
- NN with two hidden layers (input x hidden x hidden x output → 3 layers in total) can approximate ANY function (Cybenko'88)

Ex.1 8-3-8 Binary encoder - decoder

A target function:

Input		Output
1000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned??

• Hidden layer representation

→essential info from 8 ip. captured by 3 learned hidden units

→ability to invent features not explicitly introduced by humans

Learned hidden layer representation:

ſ	Input		Hidden			Output				
	Values									
	1000000	\rightarrow	.89	.04	.08	\rightarrow	10000000			
	01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000			
	00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000			
	00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000			
	00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000			
	00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100			
	0000010	\rightarrow	.80	.01	.98	\rightarrow	00000010			
	00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001			

Training

Sum of squared err for the 8 output units

Training

 Hidden unit encoding for the 3 hidden units

Training

• 9 weights from 8 ip. to 1 hidden unit

Ex.2 NN for face recognition

- Data
 - 624 greyscale images 120x128
 - Pixel intensity 0-255
- Task
 - predict forward, left, right, up
- Net
 - Ip: 30x32 pixel intensities
 - Op: 4 nodes

 (1-of-n op. coding) e.g.
 (.1,.1,.9,.1)
 - One hidden layer: 3 nodes
 - Tr. Time: 5 min to achieve 90% acc. (vs. 60 min for 30 hidden nodes which performs just slightly better (~92%))

Typical input images

Ex.2 NN for face recognition

- Weights into the three hidden layer nodes after 100 epochs
- Weights from image pixels into each hidden unit, plotted in the pos. of the corresp. pixel

Typical input images

 $\rm http://www.cs.cmu.edu/{\sim}tom/faces.html$

Resources

- NN for Pattern Recognition, Bishop C.M., 1996
- Stuttgart NN Simulator (SNNS)

http://www.ra.cs.uni-tuebingen.de/SNNS/

• NN for face recognition

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitche II/ftp/faces.html