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Training examples for PlayTennis



Decision tree for PlayTennis
• Is a representation  for 

classification

• Each path = conjunction of 
attributes

• Tree = a disjunction of 
conjunctions

e.g. 
(Outlook = Sunny and Humidity = Normal)
or
(Outlook = Overcast)
or
(Outlook = Rain and Wind = Weak)

Classify the following: (Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

Values for attr.

Attribute

Classes



Exercise

• Represent the following as decision trees



Top down induction of decision trees
• Greedy search through the space of possible decision trees



ID3 and C4.5  algorithms
• Challenge in designing dec. trees àhow to select current best 

splitting attribute?

• ID3 (Iterative Dichotomiser 3) - Quinlan ’86 à use information gain;
algorithm at p56

• C4.5 – Quinlan ’93 à improvements: discrete and continuous 
attributes, missing attribute values, attributes with differing costs, 
pruning trees (replacing irrelevant branches with leaf nodes)

• C5 – advantages: faster, memory efficiency, smaller decision trees, 
ability to weight different attributes



ID3 algorithm (p56)

• The ID3 algorithm can be summarized as 
follows:

1. Take all unused attributes and count their 
entropy 

2. Choose attribute for which entropy is 
minimum

3. Make node containing that attribute



Entropy
• Def.1 Measures the impurity of S 

– e.g. most impure when 50 +ve  and 50 –ve è E(S) = 1
– e.g. most pure/uniform when 0 +ve  (or 0 –ve) è E(S) = 0

• S – set of training ex.
• p+ = proportion of pos. ex.
• p- = proportion of pos. ex.

1) Compute entropy for a set S of 9 +ve and 5 -ve ex.

2) Compute entropy for a set S of 8 +ve and 13 -ve ex.



Tree classifier – ex.

At each step, 
choose the 
feature that 
“reduces 

entropy” most. 
Work towards 
“node purity”.

All the 
data

f1

f2

Choose f2

Choose f1



Information gain
• Gain(S,A) = expected reduction in entropy 

after S is partitioned using attr. A



Example1 – information gain

• G(S, A1) = ?
• G(S, A2) = ?

• E(S) = ?

• For G(S, A1)
– E(St) = ?
– E(Sf) = ?

• For G(S, A2)
– E(St) = ?
– E(Sf) = ?



Example1 – information gain
• E(S) = E([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64 = 0.99
• For G(S, A1)

– E(St) = E([21+,5-]) = 0.71
– E(Sf) = E([8+,30-]) = 0.74
– G(S, A1) = E(S)-26/64 E([21+,5-])-38/64 E([8+,30-]) = 0.27

• For G(S, A2)
– E(St) = E([18+,33-]) = 0.94
– E(Sf) = E([11+,2-]) = 0.62
– G(S, A2) = E(S)-51/64 E([18+,33-])-13/64 E([11+,2-]) = 0.12



Example 2 - selecting the next 
attribute

• Which attribute is the best classifier for S = 9+ 
and  5-?

• èselect attr. Humidity (gives grater info. gain)



Example 3 – selecting the next attribute



ID3 algorithm

D8 also 
comes 
here 



Strengths (s) and weaknesses (w) 
of ID3

• Can learn any concept (s) and (w) à overtraining if no 
inductive bias (e.g. limit no. of nodes in tree)

• Develops only a single h (w)

• No backtracking à may converge to local minima (w)

• Robust to noise (err in tr. data) – trains on statistical 
properties of entire tr. set rather than learning in 
response to individual ex. (s)



Inductive bias in ID3
• Search of h in the space of all possible trees

• Prefer shorter trees to longer trees

• Prefer trees with high info gain nodes close to 
root

• ID3 vs. Candidate elimination
– ID3 - searches a complete H incompletely
– Candidate elimination – completely searches an 

incomplete H



Occam’s Razor
• ID3 biased towards short trees è KISS: Keep it simple, stupid!

• Many people feel that there is some natural law (philosophy) stating 
that simple sol. are better than complicated ones

• William of Occam (14th century) while shaving: 
Given the choice of 2 ways to solve a problem, select the simpler 
of two

• Mitchell: prefer the simplest h that fits the data

• Arguments in favor of short h
– Fewer short h than long ones
– A short h that fits data is unlikely to be a coincidence

• Occam’s R. relates well with the pb. of overfitting: simple hypothesis 
generalize well 



Overfitting(p67)
• Def. h overfits the tr. data if exists h’ s.t. h 

has smaller err than h’ on training, but h’
has smaller err than h over all data



Overfitting – ex.
• What is the significance of the intersection point 

at x = 6?



Avoiding overfitting
• How to avoid overfitting?

– Stop growing when data split not statistically different
– Grow full tree and then prune it

• How to select “best” tree?
– Measure performance over tr. data
– Measure performance over validation data (test)

• 65% - training
• 10% - validation (for pruning)
• 25% - testing



Pruning
• Def. Removing all descendant nodes of a node 

and replace the node by a leaf that classifies all 
of its ex. to have same class as the majority of 
its ex.

• Prune a node if the tree performs equally well
or better on the validation set

• The tree is pruned bottom-up
– For each node, keep subtree or change to leaf
– Choose by comparing estimated err



Effect of pruning
• Trace evolution of pruning starting at right with completely trained 

tree and moving back to left until additional pruning no longer 
improves performance on validation set



Rules post-pruning

• Abandon the tree structure and deal only 
with the rules resulted from the tree

preconditions

postcondition



Rule post-pruning – alg.

• Used more when tr. data is limited
• Used in C4.5:

1. Obtain tree from training data
2. Convert tree to if-then rules
3. Prune each rule independently (= remove 

preconditions if the resulted rule performs 
better on the validation set)

4. Sort final rules by their estimated accuracy 
for use



Converting a tree to rules



Continuous valued attributes

• Create discrete attribute to test continuous
e.g. (Temperature > 54) = yes



Attributes with many values
• Problem – if attribute has many values, Gain will select it

• E.g. imagine using Date  (e.g. Jun_3_1996) as attribute

• è better use GainRatio rather then Gain alone



Unknown attribute values
• Assign most common value of attribute A among 

the other examples

• Assign most common value of attribute A among 
the other examples with same label

• Assign probability (used by C4.5)
e.g. if node n contains 6 ex. with A=1 and 4 with 

A=0èP( A(x)=1 ) = 0.6 and P( A(x)=0 ) = 0.4 



Conclusions - decision trees

• Easy to interpret à easy to generate if-then rules
• Robust to noise
• Learn disjunctive hypothesis 
• Learn discrete value target function
• When to consider decision trees

– Target function is discrete value
– Missing attribute values
– Possibly noisy data
– Disjunctive hypothesis may be required
– Learn discrete value target function


