Ch3. Decision Tree Learning

S. Visa

Training examples for PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Decision tree for PlayTennis

* Is a representation for - Attribute

classification —
Values for attr.

- Each path = conjunction of 5 o ;/

attributes | .

Humi ’1 ¥ Ves Wind

- Tree = a disjunction of /\ /\

conjunctions | _

HJ,S.,H Norr m' Strong Weak

e.g. / \
(Outlook = Sunny and Humidity = Normal) N” h v P

or
(Outlook = Overcast) \/

or Classes

(Outlook = Rain and Wind = Weak)

Classify the following: (Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

Exercise

* Represent the following as decision trees

o \,V, XOR
e (ANB)V(CAN=DAFE)

Top down induction of decision trees

» Greedy search through the space of possible decision trees
Main loop:
1. A «+ the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?

[29+,35-] A1="7 [29+,35-] A2="7

t f t f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

ID3 and C4.5 algorithms

Challenge in designing dec. trees ->how to select current best
splitting attribute?

ID3 (Iterative Dichotomiser 3) - Quinlan * 86 = use information gain;
algorithm at p56

C4.5 — Quinlan " 93 = improvements: discrete and continuous
attributes, missing attribute values, attributes with differing costs,
pruning trees (replacing irrelevant branches with leaf nodes)

C5 — advantages: faster, memory efficiency, smaller decision trees,
ability to weight different attributes

ID3 algorithm (p56)

* The ID3 algorithm can be summarized as
follows:

1. Take all unused attributes and count their
entropy

2. Choose attribute for which entropy is
minimum
3. Make node containing that attribute

Entropy

« Def.1 Measures the impurity of S

— e.g. most impure when 50 +ve and 50 —ve = E(S) = 1

— e.g. most pure/uniform when 0 +ve (or0—-ve) = E(S)=0
* S - set of training ex.

e p., = proportion of pos. ex.
e p.= proportion of pos. ex.

Entropy(S) = —p. logs ps, — p- log, p.]

1.0

1) Compute entropy for a set S of 9 +ve and 5 -ve ex.

2) Compute entropy for a set S of 8 +ve and 13 -ve ex.

Entropy(S)

0.5

0.0 0.5 1.0

Tree classifier — ex.

f, .
-° o | Allthe
o e oo| data
@) ‘) ® e f
Choose f, 1 At each step,
choose the
° T3][feature that
°1& S “reduces

entropy” most.

Work towards

*s

“node purity”.

o
o 00
L)
0o
o)
® O
o

Information gain

* Gain(S,A) = expected reduction in entropy
after S is partitioned using attr. A

Sy
Gain(S,A) = Entropy(S) — X uEntropy(SU)
veValues(A) |S|
[29+,35-] A1="7 [29+,35-] A2="?
t f t f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Example1 — information gain

Example1 — information gain
E(S) = E([29+,35-]) = -29/64 log, 29/64 — 35/64 log, 35/64 = 0.99

For G(S, A1)

— E(S) = E([21+,5-]) = 0.71
— E(S;) = E([8+,30-]) = 0.74
_ G(S, A1) = E(S)-26/64 E([21+,5-])-38/64 E([8+,30-]) = 0.27

For G(S, A2)

— E(Sy) = E([18+,33-]) = 0.94
— E(Sy) = E([11+,2-]) = 0.62
— G(S, A2) = E(S)-51/64 E([18+,33-])-13/64 E([11+,2-]) = 0.12

[29+,35-] !A1=? A,=? | [29+,35-]
True False True iFaIse

/

[21+, 5-]

\ / \
[8+, 30-] [18+, 33-] [11+, 2-]

Example 2 - selecting the next
attribute

 Which attribute is the best classifier for S = 9+
and 5-7

S:[9+.5-] S:[9+.5-]
E =0.940 E=0.940
Humidity Wind

Normal Weak Strong

[3+.4-] [6+.1-] [6+.2-] [3+.3-]
E=0.985 E =0.592 E=0.811 E=1.00
Gain (S, Humidity) Gain (S, Wind)
=.940 - (7/14).985 - (7/14).592 =.940 - (8/14).811 - (6/14)1.0
=.151 =.048

« =»select attr. Humidity (gives grater info. gain)

Example 3 — selecting the next attribute

{D1.D2. ... D14}

[9+.5-]
Outlook
Sunny Overcast Rain
{D1.D2.D8.D9.D11} {D3.D7.D12.D13} {D4.D5.D6.D10.D14}
[2+.3-] [4+.0—] [3+.2-]

A

? @ ?
/

Which attribute should be tested here?

Ssunmy = {D1.D2.D8.D9.D11}
Gain (Sgyppny . Humidity) = 970 — (3/5)0.0 — (2/5)0.0 = 970
Gain (Ssynny , Temperature) = 970 — (2/5) 0.0 — (2/5) 1.0 — (1/5) 0.0 = .570

Gain (‘5‘5-“};'};'1_-'; Wind) = 970 — (2“’5) 1.0 — (35) 918 = 019

ID3 algorithm

!Sunny

Humidity

[D1,D2]

D8 also
comes
here

High i }Normal
AN
No Yes

[D8,D9,D11]

Outlook

P

N

Overcast

Yes

[D3,D7,D012,D13]

Raiq

Wind

/
Strong Weak

/

No

[D6,

D14]

N\
Yes

[D4,D5,D10]

Strengths (s) and weaknesses (w)
of ID3

Can learn any concept (s) and (w) = overtraining if no
inductive bias (e.g. limit no. of nodes in tree)

Develops only a single h (w)
No backtracking > may converge to local minima (w)

Robust to noise (err in tr. data) — trains on statistical
properties of entire tr. set rather than learning in
response to individual ex. (s)

Inductive bias in ID3

Search of h in the space of all possible trees
Prefer shorter trees to longer trees

Prefer trees with high info gain nodes close to
root

ID3 vs. Candidate elimination
— |ID3 - searches a complete H incompletely

— Candidate elimination — completely searches an
iIncomplete H

Occam’ s Razor

ID3 biased towards short trees = KISS: Keep it simple, stupid!

Many people feel that there is some natural law (philosophy) stating
that simple sol. are better than complicated ones

William of Occam (14% century) while shaving:

Gi\f/en the choice of 2 ways to solve a problem, select the simpler
of two

Mitchell: prefer the simplest h that fits the data

Arguments in favor of short h
— Fewer short h than long ones
— A short h that fits data is unlikely to be a coincidence

Occam’ s R. relates well with the pb. of overfitting: simple hypothesis
generalize well

Overfitting(p67)

Def. h overfits the tr. data if exists h’ s.t. h
nas smaller err than h’ on training, but h’
nas smaller err than h over all data

Consider error of hypothesis h over
e training data: errory.qi,(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis h' € H such that

erroriain(h) < errori.uin(h')

and
errorp(h) > errorp(h')

Overfitting — ex.

What is the significance of the intersection point
at x =67

09 1 1 1 1 1 | 1 1 |

0.85 .

0.8 -
075 .
= 07 i
3]
<

0.65 H -

0.6 On training data —— .

On test data ----
055 F .
().5 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Avoiding overfitting

* How to avoid overfitting?

— Stop growing when data split not statistically different
— Grow full tree and then prune it

« How to select “best” tree?
— Measure performance over tr. data

— Measure performance over validation data (test)
* 65% - training
* 10% - validation (for pruning)
« 25% - testing

Pruning

* Def. Removing all descendant nodes of a node
and replace the node by a leaf that classifies all
of its ex. to have same class as the majority of

Its ex.

* Prune a node if the tree performs equally well
or better on the validation set

* The tree is pruned bottom-up
— For each node, keep subtree or change to leaf
— Choose by comparing estimated err

Effect of pruning

« Trace evolution of pruning starting at right with completely trained
tree and moving back to left until additional pruning no longer
improves performance on validation set

09 1 1 1 I I] 1 1 1

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6 F On training data —— .
On test data ----
0.55 F On test data (during pruning) ----- i
O S 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Rules post-pruning

» Abandon the tree structure and deal only
with the rules resulted from the tree

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) A (Humidity = Normal)

THEN PlayTe;‘nis = Yeg\/

preconditions

postcondition

Rule post-pruning — alg.

« Used more when tr. data is limited
e Usedin C4.5:

1.
2.
3.

Obtain tree from training data
Convert tree to if-then rules

Prune each rule independently (= remove
preconditions if the resulted rule performs
better on the validation set)

Sort final rules by their estimated accuracy
for use

Ry
R
Rs
Ry

Converting a tree to rules

Outlook

|
SunnyT Overcast | |Rain

/

Humidity

N
Normal

No Yes

I
Yes Wind

No Yes

. If (Outlook=Sunny) A (Humidity=High) Then PlayTennis=No

: If (Outlook=Sunny) A (Humidity=Normal) Then PlayTennis=Yes
: If (Outlook=0vercast) Then PlayTennis=Yes

: If (Outlook=Rain) A (Wind=Strong) Then PlayTennis=No

: If (Outlook=Rain) A (Wind=Weak) Then PlayTennis=Yes

Continuous valued attributes

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

 Create discrete attribute to test continuous
e.g. (Temperature > 54) = yes

Attributes with many values

* Problem - if attribute has many values, Gain will select it
« E.g.imagine using Date (e.g. Jun_3 1996) as attribute

« =» better use GainRatio rather then Gain alone

Gain(S, A)
SplitIn formation(S, A)

GainRatio(S, A) =

¢ 11, 15
1= 1 ’Sl |S|

where S; 1s subset of S for which A has value v,

SplitIn formation(S, A) = —

Unknown attribute values

« Assign most common value of attribute A among
the other examples

* Assign most common value of attribute A among
the other examples with same label

 Assign probability (used by C4.5)

e.g. if node n contains 6 ex. with A=1 and 4 with
A=0=2>P(A(x)=1)=0.6and P(A(x)=0)=0.4

Conclusions - decision trees

Easy to interpret - easy to generate if-then rules
Robust to noise

Learn disjunctive hypothesis

Learn discrete value target function

When to consider decision trees

— Target function is discrete value

— Missing attribute values

— Possibly noisy data

— Disjunctive hypothesis may be required
— Learn discrete value target function

