Single -Sourced Shortest Paths

- Directed $\operatorname{siph} G=(V, E)$
- Weight function $W: E \rightarrow \mathbb{R}$
- Weight of path $p=\left\langle v_{0}, v_{1}, \ldots v_{k}\right\rangle$:

$$
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- Shortest path weight $\delta(u, v)$

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if then exits } \\ \infty \rightarrow v \\ \text { otherwise }\end{cases}
$$

- Shortest path from u to v is any path p such that $w(p)=\delta(u, v)$
- There may be more than one shortest path from s to some $\quad v \in V$
- Lookng at all shortest paths form S, they form a tree

(a)

(b)

(c)
$b+c$ both show shortest paths from s
- What might the weights represent?
- Any measure that
- Accumulates linearly along a pith
- We want to minimize
- Travel time - edges are roads or airplane routs, etc.
- Cost
- Penalties
- Variants of shortest path posboms
- single - source - find shortest palls from a given source $s \in V$ to all vertices $V \in V$
- Single - destination
- Single-pair - shortest path fum u to v
- all-pairs - find shortest path from u to v for all u, v
- Problem exhibits optimal substructure

- Lemma - any subpath of a shortest path is a shortest path
- Proof idea - If a subpath of a shortest path p was not a shortest path, we could replace it with a shorter subpath to imprue p
- Output of a single-source shortest-pith algorithm
- For each vertex $v \in V$, find v. $\delta=\delta(s, v)$
- Initialia v.d $=\infty$
- Reduce V.d as the algorithm progesses
- maintaining v.J $\geq \delta(s, v)$
- V.D is a shortest path estimate during execution
- V. $\pi=$ predecessor of V on a shortest path fan s
- Using Vie for all V, we can build a shortest path tree
- Initialization for all siagle-sinae shortest path algorithms in the book

INIT-SINGLE-SOURCE (G, s)
for each $v \in G . V$

$$
\begin{gathered}
v \cdot d=\infty \\
v \cdot \pi=\mathrm{NIL} \\
s \cdot d=0 \\
\theta(v)
\end{gathered}
$$

- All alsorithms also involue velaxing
$\operatorname{ReLAx}(u, v, w)$
if $v . d>u . d+w(u, v)$
$v . d=u \cdot d+w(u, v)$
$\nu . \pi=u$
$O(1)$

Estinate of $\delta(s, v)$ and be impoum) usions edre (u, v)

(b)
(u, v) doer not impare the estimate

- All algontums in the book start with Init-Single-Sonra, then relax edges
- Some alsorithur support negative weights, others do not
- Never possible to find shortest paths if there is a negative cycle reachisle fam S

Negative cycles case path
 lengths of $-\infty$

- Bellman - Ford Algorithm
- Allows negative weights
- Compares V.d and V.イ for all $V \in V$
- Returns True if then are no nesative cych5, False otherwise
- Relaxes all edses $|V|-1$ times

