
Single - sourced shortest Paths

- Directed graph G = (V, E)

- weight function w : E - R

- Weight of path p = (Vo , Y ,
. . . . Vk) :

k

2- wlvi - i. Vi)
i -- I

- Shortest path weight Stu , v)

Slu , u) > {
min { WIN : unh) if there.am.

Uno V

• otherwise

- Shortest path from u to v is any path p such

that WIN =$(u ,
v)

- there may be more than one shortest path frm s

to some V EV

- ↳ Eu, at all shortest paths from S
, they form a

tree

b r e both show shortest paths frm s

- what might the weights represent?

- Any measure that

- Accumulates linearly along a path

- We want to minimize

- Travel time - edges are roads or airplane routs
,
etc

.

- Cost

- Penalties

- Variants of shortest path problems

- Single - source - find shortest paths frm a given

source s EV to all vertices v EV

- Single - destination

- single - pair - shortest path fun u to v

- all - pair - find shortest path frm u lov fr all

U
,
V

V

- Problem exhibits optimal substructure so#yJ→O
- lemma - any Sas path of a shortest path is a

shortest path

- proof idea - If a sub path of a shortest path

p was not a shortest path , we

cook replace it with a shorter sulpath

to improve p

- Output of a single - source shortest - path algorithm

- For each vertex v EV
,

find v. d = 8 (s, v)

- Initialize V. d = b

- Reduce V. d as the algorithm pngesses

- maintaining V. d Z 84 , v)

- v.d is a shortest path estimate during ,

execution

- V. IT = predecessor of V on a shortest

path from S

- Using V. IT fr all V
,
we can build a

shortest path tree

- Initialization fr all single - some shortest path

algorithms in the book

OCD

- All algorithms also involve relaxing

Estimate of Shiv) can be (un) does not

① (l) impound using edge (un) impair the

estimate

- All algorithms in the book start with Init - single - some
,

then relax edges

- Some algorithms- support negative weights
,

others do

not

- Never possible to find shortest paths if there is a

negative cycle reaches 6 from g

3 O 8

of o
Negative cycles cause path →Of
lengths of - y

- Bellman - Ford Algorithm

- Allows negate weights

- Computes v. d and v.et fr all v EV

- Returns True if there are no negative cycles , False

otherwise

- Relaxes all edses IVI - l times

]
Gael path information

propagates throughout

the graph

] cheeks fr
negate cycler

Init - sale - some ① (V) Final loop f- (E)

Nested loop ① (VE) whole thing f-(VE)

O

÷:
O O

