$$\sum_{i=1}^{k} w(v_{i-i}, v_i)$$

$$S(u,v) = \{ w(r) : u \xrightarrow{P} v \}$$
 if ther exits
 $u \xrightarrow{N} v$

- Shortest path from u to v is any path p such that
$$W(p) = S(u, v)$$

- Penaltics

- Output of a single-source shortest-path algorithm
- For each vertex
$$V \in V$$
, find $V.d = S(s, V)$
- Initialize $V.d = 00$
- Redue $V.d$ as the algorithm pagesses
- maintaining $V.d \ge S(s, V)$
- $V.d$ is a shortest path estimate during
execution

. 1

algorithms in the book

INIT-SINGLE-SOURCE(G, s) for each $v \in G.V$ $\nu.d = \infty$ $\nu.\pi = \text{NIL}$ s.d = 0 $\theta(V)$

RELAX
$$(u, v, w)$$

if $v.d > u.d + w(u, v)$
 $v.d = u.d + w(u, v)$
 $v.\pi = u$
 $0(1)$
 (u, v)
 (u, v)

BELLMAN-FORD(G, w, s)INIT-SINGLE-SOURCE(G, s) Expath information propagates throughout for i = 1 to |G.V| - 1for each edge $(u, v) \in G.E$ the graph $\operatorname{RELAX}(u, v, w)$ for each edge $(u, v) \in G.E$ **if** v.d > u.d + w(u, v)checks for negative cycles return FALSE return TRUE

Init-Susle-Source
$$\Theta(V)$$
 Final loop $\Theta(E)$
Nested loop $\Theta(VE)$ whole thing $\Theta(VE)$

