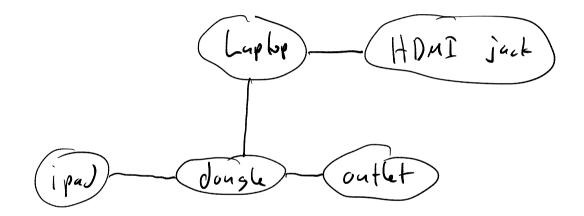
- Directed graph

Weighted graph

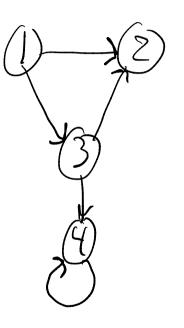
Unweighted graph - Every edge has the same weight

Mey fechnology selip

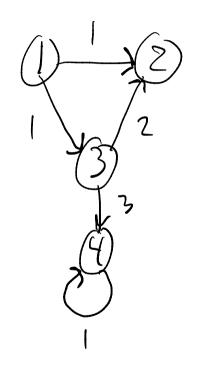


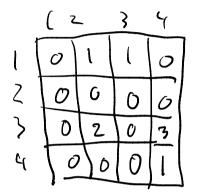
- Adjacency matrix

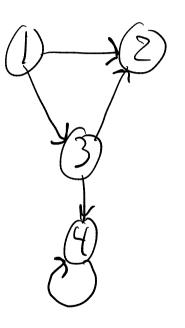
- Each entry represente an edge (or lack of edge)

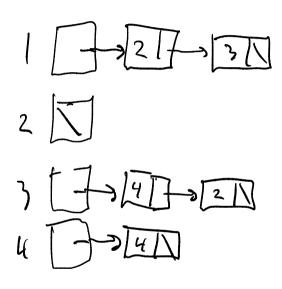


(2 3 4)0 \mathcal{O} L L ζ \mathcal{O} 6 Û 0 ζ D Ũ (4 0 (D



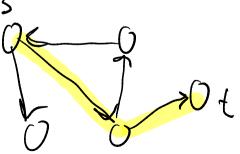


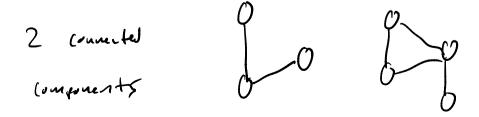


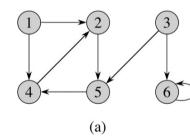


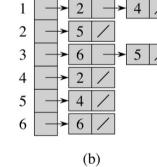
- Space VS dense graphs
- Number of edser in a grouph is
$$O(V)$$
 or $O(E)$
(upper bound)
- If $|E|$ is close to $|V|^2$, the graph is very
dense

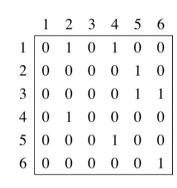
- A graph is sparse if [E] is much less think [V]

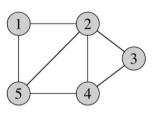




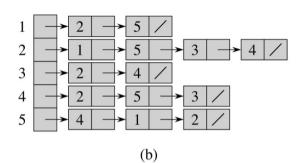








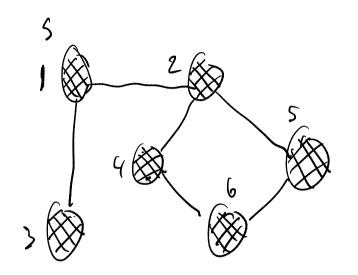
(a)

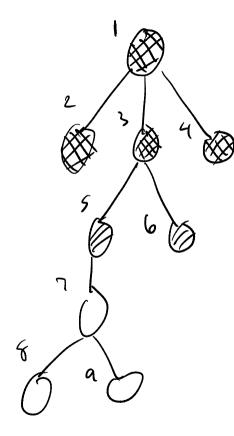


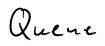
(c)

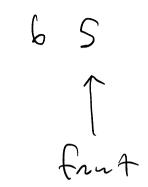
(c)

Queue

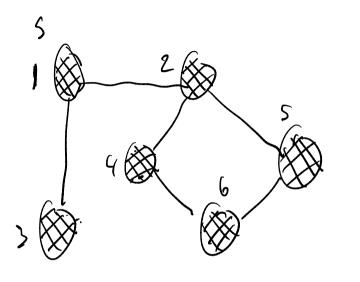


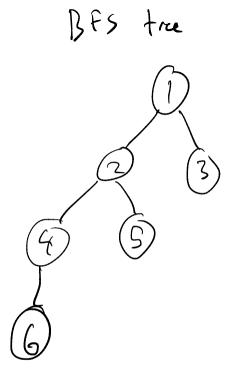




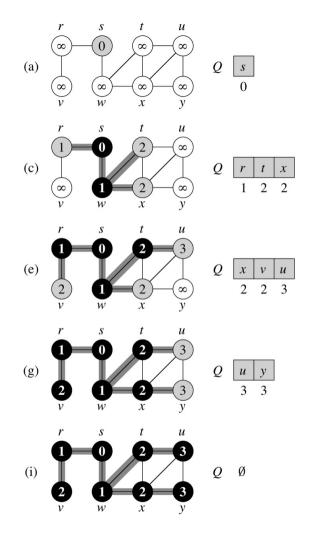


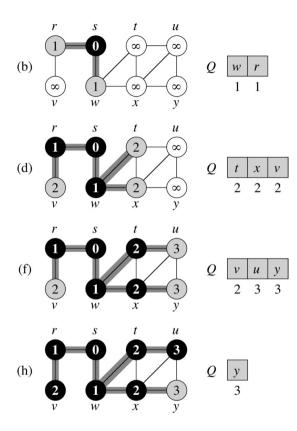
BFS on a tree visite Nodes laver by layer

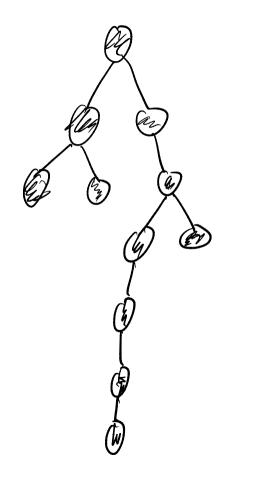




BFS(V, E, s)for each $u \in V - \{s\}$ $u.d = \infty$ s.d = 0 $O = \emptyset$ ENQUEUE(Q, s)while $Q \neq \emptyset$ u = DEQUEUE(Q)for each $v \in G.Adj[u]$ if $v.d == \infty$ v.d = u.d + 1ENQUEUE(Q, ν) - BFS time complexity







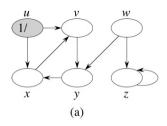
DFS(G)

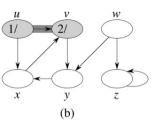
for each $u \in G.V$ u.color = WHITEtime = 0 global variable for each $u \in G.V$ if u.color == WHITEDFS-VISIT(G, u) $\Theta(V+E)$ time - DFS-Visit is called once for every verless - Every edge it checked once for directed graphs, tuin for undirected

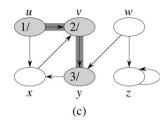
D

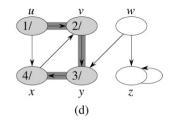
U.d is the discoury time of u
U.f is the Emissive time

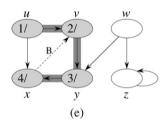
$$U.f$$
 is the Emissive time
 $U.f$ is the Emissive time

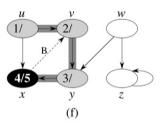


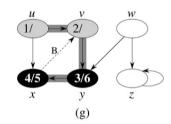


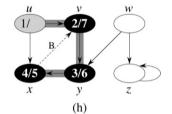


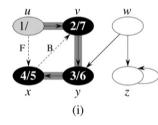


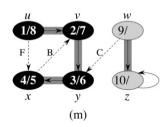


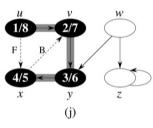












2/7

3/6

у

(n)

1/8

x

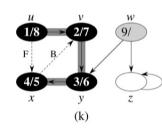
W

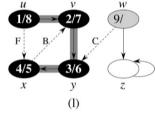
B

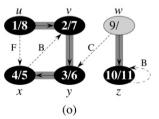
9/

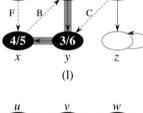
(10/

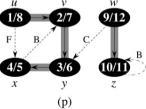
Z.

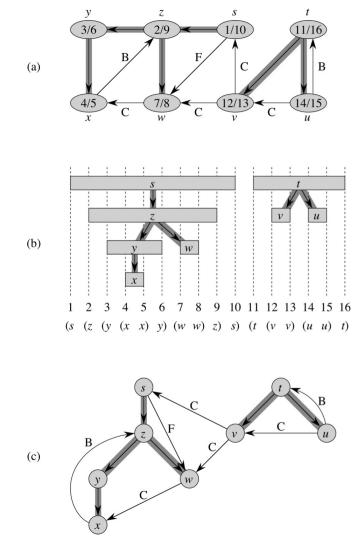


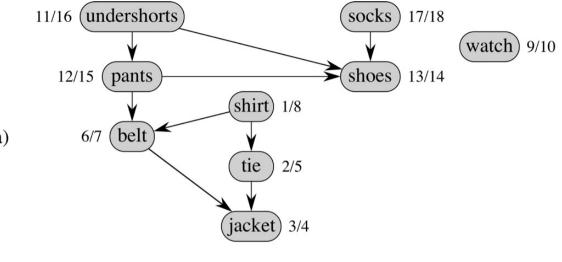


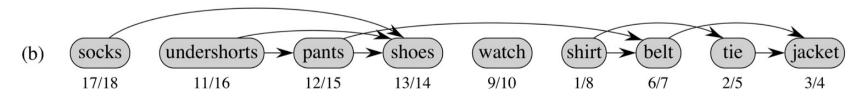












(a)