MULTIPOP(S, k) while S is not empty and k > 0POP(S) k = k - 1

- In crementing a binny number

$$01001100 + 1 = 01001101$$

oue bit changes
 11111111
 $4 - 1$
 10000000

- Start from the right and flip I's to O's until we
find a 0, where we flip to 1
-
$$O(k)$$
 where k is the number of bits
INCREMENT(A, k)
 $i = 0$ A is a 0-indexed array of k
while $i < k$ and $A[i] == 1$ (ats. $A[i]$ is the least significant
 $A[i] = 0$ bit, $A[i]$ is the least significant
if $i < k$ Significant

- A[0] flips every time - A[i] flips every other time - A[i] flips [1] times

Counter value	AT HE AS A PA AS AS AT HO	Total cost
0	0 0 0 0 0 0 0 0	0
1	0 0 0 0 0 0 0 1	1
2	0 0 0 0 0 0 1 0	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	$0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$	26
16	0 0 0 1 0 0 0 0	31

Total flips is

is the number of elements, T. size is the number of slot TABLE-INSERT (T, x)if T.size == 0Best case is O(1) allocate *T. table* with 1 slot Worst Case is O(T. num) T.size = 1if T. num == T. size// expand? allocate *new-table* with $2 \cdot T$. size slots *II T. num* elem insertions insert all items in *T. table* into *new-table* free *T. table* T.table = new-table $T.size = 2 \cdot T.size$ insert x into T. table // 1 elem insertion T.num = T.num + 1

- Cost of a single Table-Insert

$$C_i = \begin{cases} i & if i-1 & is a power of 2 \\ 0 & otherwise \end{cases}$$

-Total cost of n calls to Table - Insert

$$\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor ln \rfloor} z^j$$
Amortized time for
 $\leq n + 2n$ inserting is $O(1)$
 $= 3n = O(n)$