
Binary string Encoding

- Each character has a unique binary encoding , or

codeword,

- Fixed - length encoding

- Each codeword has the same number of bits

- Need flogaln)) bite to represent n distinct characters

- Easy to identify individual character within a string
since character are grouped by an equal # of bits

Representing a through f

a 000

b 001 110 and Ill are unused
,
but 2

c 010 bites is not enough

d ol l

l 100

f lo ,
ASCII uses 8 bits

- Variable - length encoding

- Some character use more bits than others

- Can save space if frequently used characters use

fewer bitt

- In order to determine where one char ends and the

next begins
,

no character 's encoding may be the

prefix of another character 's encoding

10 for a and 101 for b won't work

- To access an individual character at an

arbitrary position
,
the entire stay up to that

position must be scanned

Prefix Tree (or trie)

- Can be used to represent binary encoding 5

- The leaves are characters

- The path to a leaf represents the binary encoding of that

character

- The edge to a left child is O
,
the right if I

- Since character are leaves
,
no character 's encoding is the

prefix of another character 's encoding

TO a b e

a o%%÷%÷¥¥ ÷:*:c

abc Lfa
aa

0101100 1100000
www
a b C

Huffman Codes

- Compresses stress by using a variable - length encoding based

on character frequency

- Build a prefix tree where the paths from the root to the

leaves for frequent character are shorter than those for

infrequent character

- Building the tree

- Each note stores a frequency
- Leaver store a frequency and a character

- An internal node Stoner the sum of the

frequencies of the leaves of the subtree

rooted at that node

- Build the tree from the bottom up with repeated

merging operations

c is a set ask.nu, the ch-meter and their frequencies as

objects

Q is a min - heap pointy queue built from C ① (a)

① (lgu)
⑦ (Ign)

Odsal

① (Ig n)
whole thing is f- (n b n)

Greedy Algorithms

- Choose a locally optimal choice in the hope that

that it will lead to a globally optimal solution

- Make whatever choice seems best in the moment

- For some problems , a greedy solution leads to the optimal

solution

- Building Huffman codes
,
always choose the remaining

hour with the lowest frequencies to merge

- Greedy algorithms usually start out by sorting or

building a priority queue for efficient selection of

the next
"

best
"

item

