Dynamic Programming

- Recursive Fisouncei

$$f_{ib}(n) = \begin{cases} 0 & if \quad n = 0 \\ 1 & if \quad n = 1 \\ f_{ib}(n-1) + f_{ib}(n-2) & ofter mile$$

$$f_{i} f_{n} \leq 2^{n}$$

$$return n$$

$$e | se$$

$$return f_{i} (n-1) + f_{i} (n-2)$$

- DP approch

- Store the with filomacci number when it is Calculated
- IF a fis number is already calculated, use the Steed value in stead of a recursive call

_

- Rod cutting - A rod of integer length 11 can be cut into smiller rods, each with an integer length - A rod of length i can be sold for pare Pi - A table stores all the prices of possible not sizes L Y are the optimal cuty to get the best revenue - Whit rn ?

n = 4	2"-1	way S	- 4	cu t	ù	Con	o f	lensth	n
	(an't	do	brute	force	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	longer	- vo	15	
	9		8	5	5		8		
000	(a)	(b)			(c)		(d)		
000				5					
001	(e)	(f)			(g)		(h)		
1 1 0 1 0 1 0 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 3 5 8	<u>4</u> 9	5 6 10 1	5 7 7 17	<u>8</u> 20	9 24	10 30	
111									


```
MEMOIZED-CUT-ROD(p, n)
                                        Store alreidy - calculated
 let r[0 \dots n] be a new array
                                        Subprylen solutions in r
 for i = 0 to n
     r[i] = -\infty
 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
 if r[n] > 0
     return r[n]
 if n == 0
     q = 0
 else q = -\infty
     for i = 1 to n
         q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
 r[n] = q
 return q
```

	ns	Ц						
BOTTOM-UP-CUT-ROD (p, n)								
let $r[0 \dots n]$ be a new array $r[0] = 0$			0	l	(5	<u>)</u> (8	10
for $j = 1$ to n			0	l	2)	3	4
$q = -\infty$								
for $i = 1$ to j	_		,		X	<u> </u>		
$q = \max(q, p[i] + r[$	j-i])	7		l	Q		
r[j] = q return $r[n]$			Ц	L	-(16		
length i 1 2 3	4	5	6	7	8	9	10	
price p_i 1 5 8	9	10	17	17	20	24	30	

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

let $r[0 \dots n]$ and $s[1 \dots n]$ be new arrays r[0] = 0for j = 1 to n $q = -\infty$ for i = 1 to j**if** q < p[i] + r[j - i]q = p[i] + r[j-i]s[j] = ir[j] = q**return** r and s

> PRINT-CUT-ROD-SOLUTION (p, n) (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)while n > 0print s[n]n = n - s[n]