Dynamic Set

- Sets that an change over time
- Element
- key - a value identifying the element
- Satellite data - additional data belonging to the element
- Element kens may or may not be unique (set vs.
- In our book, elements are objects and the multiset) dyunmiz sets store pointers to elements
- Operatives
- Queries - return information about the set
- Modifying operations - change the set
- Typical operations
- $\operatorname{Search}(S, k)$ - A query that, given a set S and a lay k, returns a pointer x to an element in s such that x.key $==k$ or NLL if us Such element is in S
- Insert (s, x) - a modifying operation that augments the set S with the element pointed to by x
- Delete (S, X) - delete x from S, x is a painter not a key
- minimum (S) - returns the element with the smallest boy
- maximum (s)
- Successor (S, x) - given an element pointer x, returns a pointer to the next larger element in S, or NIL if x is the maximum
- predecessor (S, x) - like successor, but returns the next smaller
- The time complexity of an operation is usually in terms of the size of the set
- Stacks
- Operations

$$
\begin{aligned}
& \operatorname{push}(S, x) \\
& \operatorname{pop}(S)
\end{aligned}
$$

Binning Tree

- Tree where each node has at most 2 children
- Can be represented by a linked structure
- Elements (or nooks) have then attrimestes:
p - pointer to the panes, or NIL for the wort
left - punter b left child, or NIL
right - punter to right child, or NIL
key - the key value
- Tree T has attuinte Tirout, a pounter to the root nole, or NKC for an empty tree
$\frac{p}{4 .+1 \text { ㄷ.34 }}$

-Left and right subtrar of x - Subtrous nookl at $\begin{gathered}x^{i} s \\ \text { childen }\end{gathered}$

Binary Search Tree

- Supports Serin, insert, minimum, maximune, Successor, predecessor, and delete
- Bunin secric tree property
- Let x be a work in a binary search tree. If y is a node in the left sustra of X, then y.key $\leq X$.key If y is a node in the right subtrue of $x, y, k e y \geq x$ kay

Represent $\{1,2,3,4,5,6,7\}$

Minimum is always leftmost element, maximum is rightmost

$$
h=6
$$

(3)
(4)
(5)
(6)
(7)

In gual, height is $O(n)$
For a bulunue) troe, height is $O(1 y n)$

- Modifying opentivas
- Inset a new node z
- AdJ a ne w leaf
- Follow a path until a NIC pointer that can be repheal by z
$\operatorname{Tree-Insert}(T, z)$

$$
\begin{aligned}
& y=\text { NIL } \\
& x=T \text {.root } \\
& \text { while } x \neq \mathrm{NIL} \\
& \quad y=x \\
& \quad \text { if } z . \text { key }<x . \text {.key } \\
& \quad x=x \text {.left } \\
& \text { else } x=x \text {.right } \\
& z . p=y \\
& \text { if } y==\text { NIL } \\
& \text { Trot }=z \quad / / \text { tree } T \text { was empty } \\
& \text { elseif } z . k e y<y . k e y \\
& y . l e f t=z \\
& \text { else } y . \text { right }=z
\end{aligned}
$$

- Delete a node z
- Cases
- If 2 has no chillon, modify its parent to replace 2 with NIL as its child
- If 2 has one chill, elevate that chill to take 2 's position
- if z has 2

chillm 1 find z's sucussor y and hare y tale
(b)

*.......!!
z 's position in the tree.

r

The rest of Z's origion 1
(c)
risht subtree becomar y 's

new right Endtree, and z^{\prime} 's left subtre becomes y's
(d)
new left sultree

- Helper function transplant (T, u, v)
- Replaces the subtre routed at u with the subbrace rated at v
- Node is parent becomes node vs parent, and u's parent ends up hank v as ito appropriate child

```
Tree-Delete(T,z)
```

if z. left $==$ NIL
TRANSPLANT $(T, z, z . r i g h t) \quad / / z$ has no left child
elseif $z . r i g h t==$ NIL
$\operatorname{TRANSPLANT}(T, z, z . l e f t) \quad / / z$ has just a left child
else // z has two children.
$y=\operatorname{TrEE-Minimum}(z . r i g h t) \quad / / y$ is z 's successor
if $y . p \neq z$
// y lies within z 's right subtree but is not the root of this subtree.
Transplant (T, y, y. right $)$
y. right $=z . r i g h t$
y.right. $p=y$
// Replace z by y.
TRANSPLANT (T, z, y)
$y . l e f t=z . l e f t$
y. left. $p=y$

InORDER-TREE-WALK (x)

if $x \neq$ NIL
Inorder-Tree-Walk (x.left) print key $[x]$
InORDER-TREE-WALK (x.right)

TREE-SEARCH (x, k)
if $x==$ NIL or $k==k e y[x]$ return x

$$
\begin{aligned}
& \text { if } k<x . k e y \\
& \quad \text { return TREE-SEARCH }(x . l e f t, k) \\
& \text { else return TREE-SEARCH }(x . r i g h t, k)
\end{aligned}
$$

Tree-Minimum (x)

 while x.left \neq NIL$$
x=x . l e f t
$$

return x

Tree-Maximum (x)
while x.right \neq NIL

$$
x=x . r i g h t
$$

return x

Tree-Successor (x)

if x.right \neq NIL
return Tree-Minimum (x.right)
$y=x . p$
while $y \neq$ NIL and $x==y$.right

$$
x=y
$$

$$
y=y \cdot p
$$

return y

