
Counting sort

- Assumes each element is an integer in the range

0 to k for some inter K

- when k = OH
,
the sort runs in 0-41 time

- Determines for each element x the number of elements less than X

- Use that to place x dire-fly in its position

- Requires extra storage

K must be reasonably sized since we need an extra array of

Siu k t l
.

We also need an extra army of size n

Olk)

Qin)

out

GH

TG) = Elk) tout tock) tofu) = f- Cut k)

if k -
-
Olu) then Tcu) = Acn)

Sorting stability

- A art is stable if the items with the same value appear in the

same order in the output as they do in the input

- Stability matters when the item's value it a key and then it additional

data associated with the item (satellite data)

Radix sort

- Works for items with a fixed number of digits or characters

or fields

- starting with the least significant digit
,
sort the items by

that digit using a stink sort
,
then work your way through the rest

of the digits in increasing significance

digit 1 is least significant
" d is most

"

Lemme 8.4 in the book

Given h d -digit number in which each digit can take on up to

k possible values
,

Radix Sort correctly sorts these numbers in

① (dlutk)) if using a Qlutk) abortion like counting sort to

surf the digits.

If d is constant and k = OH
,

radix art is flu) time

- Works for unsigned binary number with a fixed number of

bite

-

" digits
"

can be bits or bytes

- Requires overhead since counting sort is not in - place

- Quick art is still often faster

Bucket sort

- Assumes input is drawn from a uniform distribution

- Each element is fun the interval [o , l) (could be 0 but not 1)

- To surf n items
,
divide the intent into u equal sized buckets

- Distribute the n items into the buckets

- Sort each bucket

- Each bucket will have very few elements (l ou average)

- Insertion sort is quadrate (0-44)
,
but we expect that the

sum of squarer of the bucket sing is linear in the number

of elements

- Average case it -04)

-
See the book for proof

- Previous arts we looked at wee comparison sort

-
insertion

,
merge

,
heap

,
quick

- The worst case running time for any comparison Surf is r (n kn)

Decision tree fr arriving at all possible permutations of a 3-element

array :

There are n ! permutations of an n - element list

That it a binary tree , so height th Z ↳ (n !)

h =D (n Ig n) (see equation 3. la
in the book)

A comparison so- thy algorithm that is f- (n ↳ n) time

is asyptotically optimal

