Counting Sort

- Assumes each element is an integer in the range 0 to k for some inter k
- When $k=O(n)$, the sort vans in $\theta(n)$ time
- Determines for each element x the number of ebunts less than x - Use this to plea x direly in its position
- Requires extra stance
k must be vensonsby sized since we need an extra army of size $k+1$. Wealgo near an extra amp of sire n
Counting-Sort (A, B, n, k)
let $C[0 \ldots k]$ be a new array
for $i=0$ to k

$$
C[i]=0 \quad \Theta(k)
$$

for $j=1$ to n

$$
C[A[j]]=C[A[j]]+1 \theta(n)
$$

(a)
for $i=1$ to k

$$
C[i]=C[i]+C[i-1] \theta(k)^{B}
$$

for $j=n$ downto 1

$$
\begin{align*}
& B[C[A[j]]]=A[j] \quad \forall(\imath) \tag{tabular}\\
& C[A[j]]=C[A[j]]-1
\end{align*}
$$

(d)

(b)

(e)

(c)

(f)

$$
T(n)=\theta(k)+\theta(n)+\theta(k)+\theta(n)=\theta(n+k)
$$

if $k=O(n)$ than $T(n)=O(n)$

Sorting Stability

- A curt is stable if the items with the same value apexes in the same order in the output as they ∂_{0} in the input
- Stability motto when the itemis value is a key aud there is additional data associates with the item (satellite data)

Radix Sort

- Works for items with a fixes) unmoor of digits or chancters or fields
- Starting with the least significant digit, sort the items by that digit using a shive sort, then work your way though the vest of the doritos in incersisy significance

$$
\begin{array}{lcl}
\text { RADIX-SORT }(A, d) & \text { digit } & \text { is least significant } \\
\text { for } i=1 \text { to } d & " & d \text { is most }
\end{array}
$$

use a stable sort to sort array A on digit i

Lemma 8.4 in th book
Given n d-disit numbers in which each digit can take on up to K possible values, Radix Sort correctly sorts these numbers in $\theta(J(n+k))$ if using a $\theta(n+k)$ alsorthm like country sort to sort the digits

If ∂ is constant and $k=O(n)$, radix sort is $\theta(n)$ time

- Works for unsisnal binary numbers with a fixes number of bits
- "dosits" can be bits or bytes
- Requires surreal since counting sort is not in-place
- Quicksurt is still often faster

Buckert Sort

- Assumes inpat is damen forn a unifern distribution
- Each eluant is form the intervol $[0,1$) (coul) be 0 but not 1)
- To sort n items, divice the interal into n equal sizal buclects
- Distrinate the n iteus into the buclets
- Sort each buikat
- Each bucket will have vey fors elewents (1 on average)

$\operatorname{Bucket-Sort}(A, n)$

let $B[0 \ldots n-1]$ be a new array
for $i=0$ to $n-1$
make $B[i]$ an empty list
for $i=1$ to n
insert $A[i]$ into list $B[\lfloor n \cdot A[i]\rfloor]$
for $i=0$ to $n-1$
sort list $B[i]$ with insertion sort
concatenate lists $B[0], B[1], \ldots, B[n-1]$ together in order return the concatenated lists
(a)

(b)

- Eusotion sort is quadratic $\left(\theta\left(n^{2}\right)\right)$, but we expect that the Sum of squarer of the bucket sines is linear in the number of elements
- Average case is $\theta(n)$
- See the book for poof
- Previons sorts we looked at wee comparisun sorts - insetim, werge, henp, quick
- The worst case running time for any comparioun sort is $\Omega(n \mathrm{l}, \mathrm{n})$

Decision tree for arriving at all possible permutations of a 3-clamet

There are n ! permutations of an n-element list
This is a bim tree, so height $h \geq \lg (n!)$

$$
h=\Omega\left(\begin{array}{lll}
n & \text { ss } & n
\end{array}\right) \quad\binom{\text { See equation } 3,14}{\text { in the book }}
$$

A comparison sorting algorithm that is $\theta(n \lg n)$ time is asyptotically optimal

