Countily Sort
- Assumes each element is an integer in the mase
0 to k for some integer k
- When
$$k = O(u)$$
, the sort muss in $O(u)$ time
- Determines for each element x the number of elements less than x
- Use this to plue x directly in its position

- Requires exta storse

Sorting Stability

- Works for items with a fixed unmine of digits or character or fields - Starting with the lenst significant digit, sort the items by that digit using a stable sort, then work your way through the vest
 - of the disits in increasing significance

RADIX-SORT
$$(A, d)$$

for $i = 1$ to d
 $disit | is least significantif $disit | is most$$

use a stable sort to sort array A on digit i

329	720		720	329
457	355		329	355
657	436		436	436
839	 457	j)p-	839	 457
436	657		355	657
720	329		457	720
355	839		657	839

Lemma 8.4 in the book
Given in d-disit numbers in which each disit on take on up to

$$K$$
 possible values, Radix Sort correctly sorte these numbers in
 $O(J(n+k))$ if using a $O(n+k)$ aborthen like country sort to
sort the disits

If d is constant and k = O(n), radix sort is O(n) time

- Sort each bucket

BUCKET-SORT(A, n)let B[0...n-1] be a new array for i = 0 to n - 1make *B*[*i*] an empty list for i = 1 to ninsert A[i] into list $B[|n \cdot A[i]|]$ for i = 0 to n - 1sort list B[i] with insertion sort concatenate lists $B[0], B[1], \ldots, B[n-1]$ together in order return the concatenated lists

1 2

3

4

5

6

7

8

9

- Insertion sort is quadratic
$$(\theta(u^2))$$
, but we expect that the
Sum of Squarer of the backet sizes is linear in the number
of elements

- Average case is
$$O(u)$$

- See the book for proof

- The worst case rouning time for any comparison sort is
$$\Omega(n + n)$$

Decision true for arriving at all possible permutations of a 3-element

$$\underbrace{\begin{array}{c} 2:3 \\ (1,2,3) \\ (1,3,2) \\ (1,3,2) \\ (1,3,2) \\ (3,1,2) \\ (2,1,3) \\ (2,3,1) \\ (3,2,1) \\ (1,3,2) \\ (1,3,2) \\ (1,3,2) \\ (1,3,2) \\ (2,3,1) \\ (2,3,1) \\ (3,2,1) \\$$

is a syptotically optimal