Trees

- Hierarchical data structure
- Composer) of nodes (or vertices) which hare children, and pantie are connected to children by edges (or links)
- Nodes may have values
- Every wore except the root must have exactly one parent
- Nodes with children are internal nodes
- Nodes wo children are leaves

- The height of a node is the lenghth of the longest downwind path fam the ware to a least (number of edges in the path)
- The height of the tree is the height of the root
- The depth of a node is the lenghth of the path from the node to the root

- Bins trues
- Tree when every wade has at most 2 children
- Complete binary tree (according to our boot terminology)
- All leaves have the same depth
- All wader have 0 or 2 children
- Number of nodes $n=2^{h+1}-1$

- height $h=\log _{2}(n+1)-1=\theta(\lg n)$
- number of leones is 2^{n}
- nearly complete binary tree
- Every level, except possibly the last, is completely filled
- All leaves are as for to the left as possible

Representing Trees

- If a node may have an unbounded number of children
- Use a linked structure
- A volts children are stores as an array or last of pointers
- representing complete or near complete hinny trees
- Use an array

(a)

(b)
- First element (index $i=1$) is the root
- The left child of node at index i is at $2 i$, the risht at $2 i+1$ LEFT (i) rotors $2 i$, $\operatorname{RIGHT}(i)$ returns $2 i+1$, PARENT (i) rations $\lfloor i / 2\rfloor$

Binary Heap

- Nearly complete binary tree
- Represented by an array

- Max herp
- The value of a parent is greater than or equal to its children
- The largest value is the root
- Max has paparty: $A[\operatorname{Parent}(i)] \geq A[i]$
- Min heap
- Smallest value is the root, $A[\operatorname{PARENT}(i] \leq A[i]$

Priority Queue

- Lite a normal queue, items can be pushed into the queue
- Unite a normal queue, the next item to be popper) is the item with the highest (or lowest with a min hasp) value
- Implementation using a heap
- Next element to pop is the root
- When popping, replace the rout with the rightmost lent in the lowest level

- while the herp property is violate), swoop the node that viountes the property with its largest chits
- Popping is $O(l y n)$ beaune the max number of swaps is the hight of the tree
- To push, adJ a node as the leftmost possible leaf. While the heap pouprty is viountes, repeatedly swap the node that vicuentes the
 purest with its paras
- Pushing is also $O\left(\begin{array}{ll} & n\end{array}\right)$

A herp in airy A of size n. Assumes the trees rooted at $\operatorname{Max}-\operatorname{Heapify}(A, i, n) \quad \operatorname{LEFT}(i)$ and $\operatorname{RICHT}(i)$ are max heaps, but $l=\operatorname{Left}(i)$ $r=\operatorname{Right}(i)$ A [i] might be smaller than its chillon en if $l \leq n$ and $A[l]>A[i]$ largest $=l$
else largest $=i$
if $r \leq n$ and $A[r]>A[$ largest $]$ largest $=r$
if largest $\neq i$ exchange $A[i]$ with $A[$ largest $]$ Max- $\operatorname{Heapify}(A$, largest, n)

$$
\begin{aligned}
& i=2 \\
& n=5
\end{aligned}
$$

- Uss) when popping from a heap painty queue

$$
O(\lg n)
$$

Turns array A into a max heap
$\operatorname{BuILD}-\operatorname{Max}-\operatorname{HeAp}(A, n)$
for $i=\lfloor n / 2\rfloor$ downto 1 $\operatorname{Max}-\operatorname{Heapify}(A, i, n)$

Iteratively uses MAX - HEAPIFY starting at the second to lowest level and works its way up

This is $\mathrm{O}\left(\begin{array}{ll}n & l_{\mathrm{s}} \mathrm{n}\end{array}\right)$, but that is not the tightest bound)

Heap height $\left\lfloor\begin{array}{ll}l_{y} & n\end{array}\right]$
There are at must $\left\lceil\frac{n}{2^{n+1}}\right\rceil$ nodes at any height h MAX-ITEAPIFY requires $O(h)$ time for a node of height h

$$
\sum_{h=0}^{\lfloor h ; n\rfloor}\left[\frac{h}{2^{h+1}}\right\rceil O(h)=O\left(n \sum_{h=0}^{\lfloor 1, n\rfloor} \frac{h}{2^{h}}\right)
$$

By the equation A. 8 in the appendix

$$
\sum_{h=0}^{\infty} \frac{h}{2^{h}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2 \quad \text { The whee thing is } O(n)
$$

$\operatorname{Heapsort}(A, n)$

$$
O\left(\begin{array}{lll}
n & \lg & n
\end{array}\right)
$$

$\operatorname{Build}-\operatorname{Max}-\operatorname{Heap}(A, n)$ for $i=n$ downto 2
exchange $A[1]$ with $A[i]$
Max- $\operatorname{Heapify}(A, 1, i-1)$

