
Trees

- Hierarchical data structure

- Composed of nodes (or vertices) which have children
,
and parents

are connected to children by edges (or links)

- Nudes may have values ④
←
root

- Every node except the root must have exactly § ¥
one parent

- Nodes with children are
internal nodes ¥0 ¥

④
- Nodes w/o children are leaves µ

- The height of a node is the leash th of the longest downward

path from the node to a leaf (number of edges in the path)

- The height of the tree is the height of the not

- The depth of a node is the ↳4th of ④
←
root

the path from the node to the root § ¥
bi
④

£10

- Binary trees

- Tree where every node has at most 2 children

- Complete binary tree (according to our book terminology)

- All leaves have the same depth
A

- All nader have 0 or 2 children o o

r do Ho
- Number of nodes h = 2h " - I

- height 1h = log . Cut ') - I = ① (Ig n)

- number of lanes is 2h

- nearly complete binary tree

- Every level
,
except possibly the last , B completely filled

- All leaves are as far to the left as possible

O

Ô O

6861
Glod

Representing Trees

- If a node may have an unbounded number of children

- Use a linked structure

- A node 's children are stored as an army or list of pointers

- representing complete or nearly complete binary trees

- Use an array

- Fist element (index i =L) is the root

- The left child of node at index i is at 2 i
,
the right at Zitl

LEFT fi) returns Zi
,
RIGHT Ci) returns Zi t I , PARENT(i) nekrus

Lily

Binary Heap I

④
- Nearly complete binary tree

l l
260 '⑧ 10161816µg

- Represented by an army 4 Of ④ I 2 3 4 56

- Max heap

- The value of a parent is greater than or equal to it
,
children

- The largest value is the root

- Max heap property : A [PARENTED Z Ali]

- Min heap

- Smallest value is the root
,

A- [PARENTE) E A [i]

Priority Queue

- Like a normal queue ,
items can be pushed into the queue

- Unlike a normal queue
,
the next item to be popped is the item

with the highest (or lowest with a min heap) value

- Implementation using a heap ,

⑧
- Next element to pop is the root l l

260 360
- When popping , replace the rout with / y

the rightmost leaf in the lowest level
" ④ '②

- while the heap property is violated
,
swap the hole that violates

the property with its largest child

- popping is 0 (Ig n) because the max number of swaps

is the height of the tree

- To push, add a node as the '

⑨
leftmost possible leaf . while the l l

260 380
heap property is violated

, repeatedly / y y

swap the node that violates the
" ④ '②④

property with its parent

- pushing is also O(Ig n)

A heap in army A- of size h . Assumes the trees rooted at

LEITH and RIGHT Cil are wax heaps
,
but

Ali) might be smaller than its children

'

③ i -- 2

l l n -- s

240 360
^

" ① ④

- Used when popping frm a heap panty queue

011g u)

Turns army A into a wax heap

Iteratively uses MAX - HEAPIFY starting

at the second to lowest level and works

its way up

This is Olu b n)
,
but '③

that is not the tightest ⑥ ¥bound
4KHAO

Heap height Llg n)is

there are at most FIT) nodes at any height h

MAX - HEAPIFY requires 01h) time for a node of height h

ii. ⇐um -

- an :÷⇒

By the equation A. 8 in the appendix

tht = city = 2 The whole thing is Olu)

O (n ly u)

