
Recursion

- Recursion is a programming technique involving a function (or procedure)

calling itself (a recursive call)

- Each recursive call salves a smaller instance of the problem

- The smallest instance must be solvable without a recursive call (the base case)
O

- Common Uses

/ I
- Divide and conquer o O

- Iterating our trees { to flo
- Implementing recurrences in code

(th . - su this can be less efficient than looping in many cases)

Recurrence

- A description of a function in terms of its value on smaller inputs

n

n ! = I. 2.3 .

.

. . in = IT x
X- I

1 if u = I

n! = { n - Cn -D ! otherwise
recurrence

def factorial (n) : def recursive - factorial (n) :

product = I if n == Ii

return I
fer x in range (I

,
htt) :

else :

product * = X return n * recursive - factual (n -Y

return product

Recursion vs Iteration

- What can be done with recursion can also Le done with a loop

- hoops car sometimes perform better

- Avoids the overhead of function calls

- If the recursion will be deep there is a risk of overflowing the

call stack

-
loops might be more difficult to implement

- Recursion keeps track of data on the call stuck

- Looping weight require using your own stack

- Functional programming language 5 encourage recursion ,
and can optimize so

that it actually uses a loop behind the scenes in the compiled version

Fibonacci Number Fs s

Fn is the Fth Fibonacci number / \
Fy z

Fz 2

← in. It2 I f F
Z l l

✓ \ It 1 , I

fn = { 9 if I Fei F
,

Fi Fo
e
, E

Fm, ten, otherwise (y l l °
I O

F
,

Fo

I 0

Recursive fibonacci is not feasible with doing some extra bookkeeping

