
Searching

i Determining whether or not a target is contained in a date structure

(such as an array)

or

- Looking up an item by a key (value that uniquely identifies something
,

like an ID)

- Very common problem in CS

- Data structures can get very large
,

so we are interested in algorithms that can

search quickly

- Time complexity analysis

- when analyzing time complexity we talk about the number of steps an algorithm

takes
,

not the actual amount of time it takes

- In particular we want to know how long the algorithm will take based on

the size of the input (in this case
,
the size of an array)

- Searching for an element in an array of n elements

- Worst case
{ I

,
2
,
- lo

,
40
,
183

- The target is not in the array
- Every element must be checked before returning false

- Takes n steps

- The amount of time taken to search grows
tµthready with the size of the array

- If n doublet
,
the number of steps doubles

- Best case

- The target is the first element in the array
- No elements beyond the first element need to be checked

- The amount of time taken in the best case is constant

- No matter the sin of the array , the
best case always takes

the same time

- Binary search
{ - 20

,

- lo
,
I
,
2
,
18
,
40

,
423

- Only works on a sorted array

- Algorithm

- If the array has 0 elements
,
return false

- Compare the middle element to the target

- If they are equal
,

return true

- If the target is less than the middle element
,
repeat the

search on the portion of the array to the left of the middle

- If the target is greater than the middle
,
repeat the search

on the portion of the army to the right of the middle

{ - 20
,

-10
,
I
,
2
,
18
,
40

,
423

Search for 42 Search for - 15

Middle is 2
,
less than 42 middle is 2

,
greater than - IS{Repeat search on { 18

,
40
,
421 [repent search on { -20

,
-10

,
I }

Middle is 40
,

less than 42 middle is -10
,
greater than - IS

[Repeat search on { 423 [repeat search on { - 203

(Middle is 42
,
return true [

middle is -20
,
less than - Is

repeat the search on E3

[base case
,
return false

boot binary - search (int target, int * army , size
-
f size) ;

say array is { I
,
2
,
S
,
10,30, 45 , 46,48 }

O l 2 3 4 S 6 7

size is 8

middle index is size 12

- with odd size gives the true middle

-
with ever size gives the leftmost element of the right half

Say we're searching for 6

middle index is 4 (value 30
,

so search to the left)

return binary - search (target, array
,

middle
.-
index) ;

search to the right of middle
- index { 1,2 , S, 10,30, 4S , 46,48 }

O l 2 3 Y S 6 7

-
return binary - search (target, array t middle- index + I ,

size - middle- index - l) ;

{ 45,46
,
48 }

O l 2

{ 1,2 , S, 10,30, 45 , 46,48 , 49, so
,
Si
,
S2

,
S3
,
54

,
SS
,
56 }

O l Z 3 Y S 6 7 8 9 10 11 12 13 ly IS

of calls
size to binary seven

(worst case)

÷÷f ±.2 32 7 logarithmic time

2
""")

h Iogzfn) tz complexity

