
Software DevelopmentPrinciples

CS110: Imperative ProblemSolving

What are they?

CS110: Imperative ProblemSolving

• They serve as best practices when developing software
• General guidelines and there can be exceptions

• Without them you might still have working code, but may have
difficulties with:
• Debugging
• Testing
• Reading
• Maintenance

CS110: Imperative ProblemSolving

Software Maintenance

• Can be used to reference development activities that are not purely
maintenance (like newfeatures)

• A more modern term is Software Evolution
• A wholistic view of the process of software development
• Considers not just activities to keeping existing software running, but also

expanding features

• Maintenance accounts for 80% of software development costs [US
Department of Commerce2002]

CS110: Imperative ProblemSolving

Why is maintenance so expensive!?

• Software products vary drastically insize
• https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

• If your software is used by people…it will inevitably require changes
• OS updates
• New versions of programming languages or features
• Library changes
• Bugs
• New features driven by the market or users

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

BROWN
• Existing Project
• Long standing codebase
• New features must be

integrated into the existingcode
base
• Higher risk that changesbreak

existing features
• Well established customerbase

CS110: Imperative ProblemSolving

GREEN
• New Project
• Minimal burden of legacycode
• More freedom toinnovate
• Lower risk for softwarechanges
• Few or no existingcustomers

Greenfield vs. Brownfield

CS110: Imperative ProblemSolving

Separation of Concerns (SoC)

• Code that is concerned with one thing should go in one place
• Network communication, reading and writing files, accessing a database, all

the code that deals withstatistics, etc.

• In C this happens at the function level and the module level
• Modules should contain related functions address the same overall concern

• Easier to test units ofcode
• Functionality is isolated

• Easier tomaintain
• more likely that a change will only have to happen in one place

CS110: Imperative ProblemSolving

Don't Repeat Yourself (DRY)

• If you have the same code in multiple places in your program, it may
be best to put it in a function
• Makes it more likely that a change will only have to happen in one

place
• Having duplicate code in your program is sometimes referred to as a

“code clone”
• These are classified as “codesmells”
• Things that may be a potential design issue

CS110: Imperative ProblemSolving

KISS (Keep it simple, student)

• Simpler is oftenbetter

• A simple function is easier to understand than a complex function

• "Clever" solutions can be hard to understand

• Simple code is easier tomaintain

CS110: Imperative ProblemSolving

Refactoring

• Changing the structure of your code without changing how it behaves
• There are lots of refactoringpatterns
• https://refactoring.com/catalog/

• Often done before adding a feature or fixing a bug
• Example
• Problem:A program uses a for loop in multiple locations to print the contents

of an array
• Solution: Extract the for loop and printing to a function and call that when

necessary

CS110: Imperative ProblemSolving

What about optimizations and performance?

• Everyone likes ”fast”programs…

• However, performance matters most when a program it too slow to
accomplish a task or does not meet requirements

• Be careful not to try and optimize too early

• Prioritize readability andmaintainability

CS110: Imperative ProblemSolving

Comments and Documentation

• Comments are good when they focus on the purpose of the code
• People can read what code does but might not know why it’s important
• If it needs a clarification comment, it might be overly complicated

• Code can also be“self-documenting”
• int foo(int x, int y) vs. int average(int sum, int count)

• int x vs. int total_pay

• Function documentation helps people understand how to use your
code

CS110: Imperative ProblemSolving

Invariants

• Things that are always true (or should always be true)

Function invariants:
• Preconditions
• Whatis true about the inputs
• This is what the function expects from the caller

• Postconditions
• Whatis true about the output
• Return values, things that are printed, communication over the internet

CS110: Imperative ProblemSolving

Function Invariants Example

/*

Preconditions:

array is an array with size number of elements

Postconditions:

The return value is the sum of the elements.

*/

int array_sum(int array[], size_t size);

CS110: Imperative ProblemSolving

Useful Tips

• Build up your codeslowly
• Don’t try to write the whole program and once and then compile, run, and

test

• Compile frequently
• Typos happen and your compiler is the first line of defense (think of it like an

advanced spell check)

• Test your code incrementally
• The compiler doesn’t catch everything, you need to run the code
• Think about what types of input your program might get and see if the results

are what youexpect

