
Figure 4.1 An abstract view of the implementation of the RISC-V subset showing the major functional units and the major

connections between them. All instructions start by using the program counter to supply the instruction address to the instruction memory.

After the instruction is fetched, the register operands used by an instruction are specified by fields of that instruction. Once the register operands

have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer

arithmetic-logical instruction), or an equality check (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU

must be written to a register. If the operation is a load or store, the ALU result is used as an address to either load a value from memory into the

registers or store a value from the registers. The result from the ALU or memory is written back into the register file. Branches require the use of

the ALU output to determine the next instruction address, which comes either from the adder (where the PC and branch offset are summed) or

from an adder that increments the current PC by four. The thick lines interconnecting the functional units represent buses, which consist of

multiple signals. The arrows are used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show

when crossing lines are connected by the presence of a dot where the lines cross.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.2 The basic implementation of the RISC-V subset, including the necessary multiplexors and control lines. The

top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate

that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle multiplexor, whose

output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data

memory (in the case of a load) for writing into the register file. Finally, the bottom-most multiplexor is used to determine whether the second ALU

input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction (for a load or store). The

added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and

whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.3 Combinational logic, state elements, and the clock are closely related. In a synchronous digital system, the

clock determines when elements with state will write values into internal storage. Any inputs to a state element must reach a

stable value (that is, have reached a value from which they will not change until after the clock edge) before the active clock

edge causes the state to be updated. All state elements in this chapter, including memory, are assumed positive edge-

triggered; that is, they change on the rising clock edge.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.4 An edge-triggered methodology allows a state element to be read and written in the same clock cycle without creating a

race that could lead to indeterminate data values. Of course, the clock cycle still must be long enough so that the input values are stable

when the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggeredupdate of the state element. If

feedback were possible, this design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing

methodology and on structures like the one shown in this figure.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.5 Two state elements are needed to store and access instructions, and an adder is needed to compute the next instruction address.

The state elements are the instruction memory and the program counter. The instruction memory need only provide read access because the datapath

does not write instructions. Since the instruction memory only reads, we treat it as combinational logic: the output at any time reflects the contents of the

location specified by the address input, and no read control signal is needed. (We will need to write the instruction memory when we load the program;

this is not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the end of every clock cycle and thus

does not need a write control signal. The adder is an ALU wired to always add its two 32-bit inputs and place the sum on its output.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.6 A portion of the datapath used for fetching instructions and incrementing the program counter. The fetched

instruction is used by other parts of the datapath.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.7 The two elements needed to implement R-format ALU operations are the register file and the ALU. The register file contains all the

registers and has two read ports and one write port. The design of multiported register files is discussed in Section A.8 of Appendix A. The register file

always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In contrast, a

register write must be explicitly indicated by asserting the write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e.,

the value to be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge-

triggered, our design can legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock cycle, while the

value written will be available to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas

the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 4 bits

wide, using the ALU designed in Appendix A. We will use the Zero detection output of the ALU shortly to implement conditional branches.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.8 The two units needed to implement loads and stores, in addition to the register file and ALU of Figure 4.7, are the data

memory unit and the immediate generation unit. The memory unit is a state element with inputs for the address and the write data, and a

single output for the read result. There are separate read and write controls, although only one of these may be asserted on

any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an invalid address can cause problems,

as we will see in Chapter 5. The immediate generation unit (ImmGen) has a 32-bit instruction as input that selects a 12-bit field for load, store,

and branch if equal that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-

triggered for writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write enable is not edge-

triggered, our edge-triggered design could easily be adapted to work with real memory chips. See Section A.8 of Appendix A for further

discussion of how real memory chips work.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.9 The portion of a datapath for a branch uses the ALU to evaluate the branch condition and a separate adder

to compute the branch target as the sum of the PC and immediate (the branch displacement). Control logic is used to

decide whether the incremented PC or branch target should replace the PC, based on the Zero output of the ALU.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how a single datapath can be

assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the example.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.11 The simple datapath for the core RISC-V architecture combines the elements required by different instruction classes. The

components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store register, ALU operations, and branches)

in a single clock cycle. Just one additional multiplexor is needed to integrate branches.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.12 How the ALU control bits are set depends on the ALUOp control bits and the different opcodes for the R-type

instruction. The instruction, listed in the first column, determines the setting of the ALUOp bits. All the encodings are shown in binary.

Notice that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the funct7 or funct3 fields; in this case, we

say that we “don’t care” about the value of the opcode, and the bits are shown as Xs. When the ALUOp value is 10, then the funct7 and

funct3 fields are used to set the ALU control input. See Appendix A.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and funct fields. Only the

entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does

not use the encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. While we show all 10 bits of funct

fields, note that the only bits with different values for the four R-format instructions are bits 30, 14, 13, and 12. Thus, we only need

these four funct field bits as input for ALU control instead of all 10.

Figure 4.14 The four instruction classes (arithmetic, load, store, and conditional branch) use four different

instruction formats. (a) Instruction format for R-type arithmetic instructions (opcode = 51ten), which have three register

operands: rs1, rs2, and rd. Fields rs1 and rd are sources, and rd is the destination. The ALU function is in the funct3 and

funct7 fields and is decoded by the ALU control design in the previous section. The R-type instructions that we implement

are add, sub, and, and or. (b) Instruction format for I-type load instructions (opcode = 3ten). The register rs1 is the base

register that is added to the 12-bit immediate field to form the memory address. Field rd is the destination register for the

loaded value. (c) Instruction format for S-type store instructions (opcode = 35ten). The register rs1 is the base register that

is added to the 12-bit immediate field to form the memory address. (The immediate field is split into a 7-bit piece and a

5-bit piece.) Field rs2 is the source register whose value should be stored into memory. (d) Instruction format for SB-type

conditional branch instructions (opcode = 99ten). The registers rs1 and rs2 compared. The 12-bit immediate address field is

sign-extended, shifted left 1 bit, and added to the PC to compute the branch target address. Figures 4.17 and 4.18 give the

rationale for the unusual bit ordering for SB-type.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.15 The MIPS, arithmetic instruction format, data transfer instruction format,

and their impact on the MIPS datapath. For MIPS arithmetic instructions using the R format, rd is the

destination register, rs is the first register operand, and rt is the second register operand. For MIPS load and

immediate instructions, rs is still the first register operand, but rt is now the destination register. Hence the

need of the 2:1 multiplexor to pick between the rd and rt fields to write the correct register.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.16 The actual RISC-V formats. Figure 4.16 introduces R-, I-, S-, and U-types, which are straightforward.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.17 Inputs to immediate if hypotheticaly conditional branches use the S format, and if jumps, use the U

format.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.18 Inputs to immediate given that branches use the SB format and jumps use the UJ format, which is what

RISC-V uses.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.19 The datapath of Figure 4.11 with all necessary multiplexors and all control

lines identified. The control lines are shown in color. The ALU control block has also been added, which

depends on the funct3 field and part of the funct7 field. The PC does not require a write control, since it is

written once at the end of every clock cycle; the branch control logic determines whether it is written with

the incremented PC or the branch target address.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.20 The effect of each of the six control signals. When the 1-bit control to a twoway

multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control

is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an

implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element

can create timing problems. (See Appendix A for further discussion of this problem.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.21 The simple datapath with the control unit. The input to the control unit is the 7-bit opcode field from the

instruction. The outputs of the control unit consist of two 1-bit signals that are used to control multiplexors (ALUSrc and

MemtoReg), three signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and

MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU

(ALUOp). An AND gate is used to combine the branch control signal and the Zero output from the ALU; the AND gate output

controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming directly from the

control unit. Thus, we drop the signal name in subsequent figures.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.22 The setting of the control lines is completely determined by the opcode fields of the instruction. The

first row of the table corresponds to the R-format instructions (add, sub, and, and or). For all these instructions, the source

register fields are rs1 and rs2, and the destination register field is rd; this defines how the signals ALUSrc is set.

Furthermore, an R-type instruction writes a register (RegWrite = 1), but neither reads nor writes data memory. When the

Branch control signal is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced by the branch

target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indicate that the ALU

control should be generated from the funct fields. The second and third rows of this table give the control signal

settings for lw and sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and

MemWrite are set to perform the memory access. Finally, RegWrite is set for a load to cause the result to be stored in the rd

register. The ALUOp field for branch is set for subtract (ALU control = 01), which is used to test for equality. Notice that the

MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on

the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for

don’t care. This type of don’t care must be added by the designer, since it depends on knowledge of

how the datapath works.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.23 The datapath in operation for an R-type instruction, such as add x1, x2, x3. The control

lines, datapath units, and connections that are active are highlighted.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.24 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are

active are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control

would indicate a write rather than a read, the second register value read would be used for the data to store, and the

operation of writing the data memory value to the register file would not occur.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.25 The datapath in operation for a branch-if-equal instruction. The control lines, datapath units, and

connections that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is

used to select the next program counter from between the two candidates.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.26 The control function for the simple single-cycle implementation is completely

specified by this truth table. The top seven rows of the table gives the combinations of input signals

that correspond to the four instruction classes, one per column, that determine the control output settings.

The bottom portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite

is asserted for two different combinations of the inputs. If we consider only the four opcodes shown in

this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we

can detect an R-format instruction with the expression Op4 ∙ Op5, since this is sufficient to distinguish the

R-format instructions from lw, sw, and beq. We do not take advantage of this simplification, since the rest

of the RISC-V opcodes are used in a full implementation.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.27 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty

clothes to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30

minutes for their task. Sequential laundry takes 8 hours for four loads of washing, while pipelined laundry

takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four

resources on this two-dimensional time line, but we really have just one of each resource.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.28 Total time for each instruction calculated from the time for each component.

This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no

delay.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.29 Single-cycle, nonpipelined execution (top) versus pipelined execution

(bottom). Both use the same hardware components, whose time is listed in Figure 4.28. In this case, we see

a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure to

Figure 4.27. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage

would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, either

the ALU operation or the memory access. We assume the write to the register file occurs in the first half of the

clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.29 Single-cycle, nonpipelined execution (top) versus pipelined execution

(bottom). Both use the same hardware components, whose time is listed in Figure 4.28. In this case, we see

a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure to

Figure 4.27. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage

would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, either

the ALU operation or the memory access. We assume the write to the register file occurs in the first half of the

clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.31 Graphical representation of forwarding. The connection shows the forwarding path

from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register

x1 read in the second stage of sub.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.32 We need a stall even with forwarding when an R-format instruction following

a load tries to use the data. Without the stall, the path from memory access stage output to execution

stage input would be going backward in time, which is impossible. This figure is actually a simplification,

since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be

necessary. Section 4.7 shows the details of what really happens in the case of a hazard.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.33 Pipeline showing stalling on every conditional branch as solution to control

hazards. This example assumes the conditional branch is taken, and the instruction at the destination of

the branch is the or instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the

process of creating a stall is slightly more complicated, as we will see in Section 4.9. The effect on performance,

however, is the same as would occur if a bubble were inserted.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.34 Predicting that branches are not taken as a solution to control hazard. The

top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when

the branch is taken. As we noted in Figure 4.33, the insertion of a bubble in this fashion simplifies what actually

happens, at least during the first clock cycle immediately following the branch. Section 4.9 will reveal the details.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.35 The single-cycle datapath from Section 4.4 (similar to Figure 4.21). Each step of the instruction

can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-

back step, shown in color, which sends either the ALU result or the data from memory to the left to be written into

the register file. (Normally we use color lines for control, but these are data lines.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.36 Instructions being executed using the single-cycle datapath in Figure 4.35,

assuming pipelined execution. Similar to Figures 4.30 through 4.32, this figure pretends that each

instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage

is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure

4.48. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the

register file and sign extender in the instruction decode/register file read stage (ID), and so on. To maintain

proper time order, this stylized datapath breaks the register file into two logical parts: registers read during

register fetch (ID) and registers written during write back (WB). This dual use is represented by drawing

the unshaded left half of the register file using dashed lines in the ID stage, when it is not being written, and

the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the

register file is written in the first half of the clock cycle and the register file is read during the second half.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.37 The pipelined version of the datapath in Figure 4.35. The pipeline registers, in color, separate each

pipeline stage. They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it

separates the instruction fetch and instruction decode stages. The registers must be wide enough to store all the

data corresponding to the lines that go through them. For example, the IF/ID register must be 96 bits wide,

because it must hold both the 32-bit instruction fetched from memory and the incremented 64-bit PC address.

We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain

256, 193, and 128 bits, respectively.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.38 IF and ID: First and second pipe stages of an instruction, with the active portions of the

datapath in Figure 4.37 highlighted. The highlighting convention is the same as that used in Figure 4.30. As in

Section 4.2, there is no confusion when reading and writing registers, because the contents change only on the

clock edge. Although the load needs only the top register in stage 2, it doesn’t hurt to do potentially extra work, so it

sign-extends the constant and reads both registers into the ID/EX pipeline register. We don’t need

all three operands, but it simplifies control to keep all three.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.39 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in

Figure 4.37 used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed

in the EX/MEM pipeline register.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.40 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions

of the datapath in Figure 4.37 used in this pipe stage. Data memory is read using the address in the EX/MEM

pipeline registers, and the data are placed in the MEM/WB pipeline register. Next, data are read from the MEM/WB

pipeline register and written into the register file in the middle of the datapath. Note: there is a bug in this design

that is repaired in Figure 4.43.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.41 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in

Figure 4.39, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage.

Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the second

register only on a store instruction to make the pipeline easier to understand.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.42 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data

are written into data memory for the store. Note that the data come from the EX/MEM pipeline register and that

nothing is changed in the MEM/WB pipeline register. Once the data are written in memory, there is nothing left for

the store instruction to do, so nothing happens in stage 5.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.43 The corrected pipelined datapath to handle the load instruction properly. The write register

number now comes from the MEM/WB pipeline register along with the data. The register number is passed from

the ID pipe stage until it reaches the MEM/ WB pipeline register, adding five more bits to the last three pipeline

registers. This new path is shown in color.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.44 The portion of the datapath in Figure 4.43 that is used in all five stages of a load instruction.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.45 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation

shows the complete execution of instructions in a single figure. Instructions are listed in instruction execution order

from top to bottom, and clock cycles move from left to right. Unlike Figure 4.26, here we show the pipeline registers

between each stage. Figure 4.59 shows the traditional way to draw this diagram.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.46 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.45.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.47 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.45

and 4.46. As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.48 The pipelined datapath of Figure 4.43 with the control signals identified. This datapath borrows

the control logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now

need funct fields of the instruction in the EX stage as input to ALU control, so these bits must also be included in

the ID/EX pipeline register.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.49 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on

the ALUOp control bits and the different opcodes for the R-type instruction.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.50 A copy of Figure 4.20. The function of each of six control signals is defined. The ALU control lines (ALUOp) are

defined in the second column of Figure 4.49. When a 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the

input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled

by an AND gate in Figure 4.48. If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0.

Control sets the Branch signal only during a beq instruction; otherwise, PCSrc is set to 0.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.51 The values of the control lines are the same as in Figure 4.22, but they

have been shuffled into three groups corresponding to the last three pipeline

stages.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.52 The seven control lines for the final three stages. Note that two of the seven

control lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM

pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are

passed to MEM/WB for use in the WB stage.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.53 The pipelined datapath of Figure 4.48, with the control signals connected to the control

portions of the pipeline registers. The control values for the last three stages are created during the instruction

decode stage and then placed in the ID/EX pipeline register. The control lines for each pipe stage are used, and

remaining control lines are then passed to the next pipeline stage.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.54 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the

dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle

1. The first instruction writes into x2, and all the following instructions read x2. This register is written in clock cycle

5, so the proper value is unavailable before clock cycle 5. (A read of a register during a clock cycle returns the

value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top

datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data

hazards.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.55 The dependences between the pipeline registers move forward in time, so it is possible to

supply the inputs to the ALU needed by the and instruction and or instruction by forwarding the results

found in the pipeline registers. The values in the pipeline registers show that the desired value is available

before it is written into the register file. We assume that the register file forwards values that are read and written

during the same clock cycle, so the add does not stall, but the values come from the register file instead of a

pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why

clock cycle 5 shows register x2 having the value 10 at the beginning and −20 at the end of the clock cycle.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.56 On the top are the ALU and pipeline registers before adding forwarding. On

the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding

unit. The new hardware is shown in color. This figure is a stylized drawing, however, leaving out details from

the full datapath such as the sign extension hardware.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.57 The control values for the forwarding multiplexors in Figure 4.56. The signed immediate that is

another input to the ALU is described in the Elaboration at the end of this section.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.58 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure

4.53, the additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however,

leaving out details from the full datapath, such as the branch hardware and the sign extension hardware.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.59 A close-up of the datapath in Figure 4.56 shows a 2:1 multiplexor, which has been added to

select the signed immediate as an ALU input.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.60 A pipelined sequence of instructions. Since the dependence between the load and the following

instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must

result in a stall by the hazard detection unit.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.61 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by

changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but

its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise, the or instruction is

fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). After

insertion of the bubble, all the dependences go forward in time and no further hazards occur.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.62 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection

unit, and the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate

and branch logic are missing— this drawing gives the essence of the forwarding hardware requirements.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.63 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, …)

are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle

4 for the beq instruction above—the three sequential instructions that follow the branch will be fetched and begin execution.

Without intervention, those three following instructions will begin execution before beq branches to lw at location 72. (Figure

4.33 assumed extra hardware to reduce the control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.64 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the

next PC address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the

instruction at location 72 being fetched and the single bubble or nop instruction in the pipeline because of the taken

branch.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.65 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that

strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used

to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,

which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of

its range as the division between taken and not taken.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.66 The final datapath and control for this chapter. Note that this is a stylized figure rather than a

detailed datapath, so it’s missing the ALUsrc Mux from Figure 4.55 and the multiplexor controls from Figure 4.53.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.67 The datapath with controls to handle exceptions. The key additions include a new input with the

value 0000 00001C09 0000hex in the multiplexor that supplies the new PC value; an SCAUSE register to record

the cause of the exception; and an SEPC register to save the address of the instruction that caused the exception.

The 0000 0000 1C09 0000hex input to the multiplexor is the initial address to begin fetching instructions in the

event of an exception.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.68 The result of an exception due to hardware malfunction in the add instruction. The exception is detected

during the EX stage of clock 6, saving the address of the add instruction in the SEPC register (4Chex). It causes all the Flush

signals to be set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7

shows the instructions converted to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—

sw x26, 1000(x0)—from instruction location 0000 0000 1C09 0000hex. Note that the and and or instructions, which are prior

to the add, still complete.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.69 Static two-issue pipeline in operation. The ALU and data transfer instructions

are issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue

pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the

register writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a

precise exception model, which become more difficult in multiple-issue processors.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.70 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits

from instruction memory, two more read ports and one more write port on the register file, and another ALU.

Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything else.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.71 The scheduled code as it would look on a two-issue RISC-V pipeline. The

empty slots are no-ops. Note that since we moved the addi before the sw, we had to adjust sw’s offset by 4.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.72 The unrolled and scheduled code of Figure 4.71 as it would look on a static two-issue RISC-V

pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements x20 by 16, the addresses

loaded are the original value of x20, then that address minus 4, minus 8, and

minus 12.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.73 The three primary units of a dynamically scheduled pipeline. The final step

of updating the state is also called retirement or graduation.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.74 Record of Intel Microprocessors in terms of pipeline complexity, number of

cores, and power. The Pentium 4 pipeline stages do not include the commit stages. If we

included them, the Pentium 4 pipelines would be even deeper.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.75 The basic structure of the A53 integer pipeline has eight stages: F1 and F2 fetch the instruction, D1

and D2 do the basic decoding, and D3 decodes more complex instructions and is overlapped with the first stage

of the execution pipeline (ISS). After ISS, the Ex1, EX2, and WB stages complete the integer pipeline. Branches use four

different predictors depending on type. The floating-point execution pipeline is 5 cycles deep in addition to the 5 cycles

needed for fetch and decode, yielding 10 stages total. AGU stands for address generation unit and TLB for transaction

lookaside buffer (See Chapter 5). The NEON unit performs the ARM SIMD instructions of the same

name. (From Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA, 2018,

Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.76 Misprediction rate of the A53 branch predictor for SPECint2006. (Adapted from Hennessy JL,

Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA, 2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.77 Wasted work due to branch misprediction on the A53. Because the A53 is an in-order machine, the

amount of wasted work depends on a variety of factors including data dependences and cache misses, both of

which will cause a stall. (Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e,

Cambridge MA, 2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.78 The estimated composition of the CPI on the ARM A53 shows that pipeline

stalls are significant but outweighed by cache misses in the poorest-performing programs

(Chapter 5). These are subtracted from the CPI measured by a detailed simulator to obtain the pipeline

stalls. Pipeline stalls include all three hazards. (From Hennessy JL, Patterson DA: Computer architecture: A

quantitative approach, 6e, Cambridge MA, 2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.79 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14 stages, with

branch mispredictions typically costing 17 cycles and the extra few cycles likely due to time to reset the branch predictor. This design can

buffer 72 loads and 56 stores. The six independent functional units can each begin execution of a ready micro-operation in the same

cycle. Up to four micro-operations can be processed in the register-renaming table. The first i7 processor was introduced in 2008; the i7

6700 is the sixth generation. The basic structure of the i7 is similar, but successive generations have enhanced performance by changing

cache strategies (Chapter 5), increasing memory bandwidth, expanding the number of instructions in flight, enhancing branch prediction,

and improving graphics support. (From Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA,

2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.80 The CPI for the SPECCPUint2006 benchmarks on the i7 6700. The data in this

section were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.

(Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge

MA, 2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.81 The misprediction rate for the integer SPECCPU2006 benchmarks on the Intel Core i7 6700.

The misprediction rate is computed as the ratio of completed branches that are mispredicted versus all completed

branches. (Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e,

Cambridge MA, 2018, Morgan Kaufmann.)

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.82 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel

instructions for the x86 (Figure 3.20) and loop unrolling to create more opportunities for instruction-level

parallelism. Figure 4.96 shows the assembly language produced by the compiler for the inner loop, which unrolls

the three for-loop bodies to expose instruction-level parallelism.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figure 4.83 The x86 assembly language for the body of the nested loops generated by compiling the

unrolled C code in Figure 4.82.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.1 The high-level view of the multicycle datapath. This picture shows the key elements of the

datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these

shared units. The use of shared functional units requires the addition or widening of multiplexors as well as new

temporary registers that hold data between clock cycles of the same instruction. The additional registers are the

Instruction register (IR), the Memory data register (MDR), A, B, and ALUOut.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.2 Multicycle datapath for RISC-V handles the basic instructions. Although this datapath

supports normal incrementing of the PC, a few more connections and a multiplexor will be needed for branches

and jumps; we will add these shortly. The additions versus the single-clock datapath include several registers (IR,

MDR, A, B, ALUOut), a multiplexor for the memory address, a multiplexor for the top ALU input, and expanding the

multiplexor on the bottom ALU input into a four-way selector. These small additions allow us to remove two adders

and a memory unit.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.3 The multicycle datapath from Figure 4.28 with the control lines shown. The signals ALUOp

and ALUSrcB are 2-bit control signals, while all the other control lines are 1-bit signals. Neither register A nor B

requires a write signal, since their contents are only read on the cycle immediately after it is written. The memory

data register has been added to hold the data from a load when the data returns from memory. Data from a load

returning from memory cannot be written directly into the register file since the clock cycle cannot accommodate

the time required for both the memory access and the register file write. The MemRead signal has been moved to

the top of the memory unit to simplify the figures. The full set of datapaths and control lines for branches will be

added shortly.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.4 The complete datapath for the multicycle implementation together with the necessary

control lines. The control lines of Figure e4.5.3 are attached to the control unit, and the control and datapath

elements needed to effect changes to the PC are included. The major additions from Figure 4.29 include the

multiplexor used to select the source of a new PC value; gates used to combine the PC write signals; and the

control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a

conditional branch should be taken.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.5 The action caused by the setting of each control signal in Figure e4.5.4 on page 323. The

top table describes the 1-bit control signals, while the bottom table describes the 2-bit signals. Only those control

lines that affect multiplexors have an action when they are deasserted. This information is similar to that in Figure

5.16 on page 306 for the single-cycle datapath, but adds several new control lines (IRWrite, PCWrite,

PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been replaced

(PCSrc and Branch).

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.6 Summary of the steps taken to execute any instruction class. Instructions take from three to

five execution steps. The first two steps are independent of the instruction class. After these steps, an instruction

takes from one to three more cycles to complete, depending on the instruction class. The empty entries for the

Memory access step or the Memory read completion step indicate that the particular instruction class takes fewer

cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction

completes, so these cycles are not idle or wasted. As mentioned earlier, the register file actually reads every cycle,

but as long as the IR does not change, the values read from the register file are identical. In particular, the value

read into register B during the Instruction decode stage, for a branch or R-type instruction, is the same as the value

stored into B during the Execution stage and then used in the Memory access stage for a store word instruction.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.7 The high-level view of the finite-state machine control. The first steps are independent of the

instruction class; then a series of sequences that depend on the instruction opcode are used to complete each

instruction class. After completing the actions needed for that instruction class, the control returns to fetch a new

instruction. Each box in this figure may represent one to several states. The arc labeled Start marks the state in

which to begin when the first instruction is to be fetched.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.8 The instruction fetch and decode portion of every instruction is identical. These states

correspond to the top box in the abstract finite-state machine in Figure 4.33. In the first state we assert two signals

to cause the memory to read an instruction and write it into the Instruction register (MemRead and IRWrite), and

we set IorD to 0 to choose the PC as the address source. The signals ALUSrcA, ALUSrcB, ALUOp, PCWrite, and

PCSource are set to compute PC + 4 and store it into the PC. (It will also be stored into ALUOut, but never used

from there.) In the next state, we compute the branch target address by setting ALUSrcB to 11 (causing the shifted

and sign-extended lower 16 bits of the IR to be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store

the result in the ALUOut register, which is written on every cycle. There are four next states that depend on the

class of the instruction, which is known during this state. The control unit input, called Op, is used to determine

which of these arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly

important for signals that control writes. For multiplexor controls, lack of a specific setting indicates that we do not

care about the setting of the multiplexor

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.9 The finite-state machine for controlling memory reference instructions has four states.

These states correspond to the box labeled “Memory access instructions” in Figure e4.5.7. After performing a

memory address calculation, a separate sequence is needed for load and for store. The setting of the control

signals ALUSrcA, ALUSrcB, and ALUOp is used to cause the memory address computation in state 2. Loads

require an extra state to write the result from the MDR (where the result is written in state 3) into the register file.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.10 R-type instructions can be implemented with a simple two-state finitestate machine. These

states correspond to the box labeled “R-type instructions” in Figure e4.5.7. The first state causes the ALU operation

to occur, while the second state causes the ALU result (which is in ALUOut) to be written in the register file. The

three signals asserted during state 7 cause the contents of ALUOut to be written into the register file in the entry

specified by the rd field of the Instruction register.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.11 The branch instruction requires a single state. The first three outputs that are asserted cause

the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals PCSource and

PCWriteCond perform the conditional write if the branch condition is true. Notice that we do not use the value

written into ALUOut; instead, we use only the Zero output of the ALU. The branch target address is read from

ALUOut, where it was saved at the end of state 1.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.12 The complete finite-state machine control for the datapath shown in Figure e4.5.4. The

labels on the arcs are conditions that are tested to determine which state is the next state; when the next state is

unconditional, no label is given. The labels inside the nodes indicate the output signals asserted during that state;

we always specify the setting of a multiplexor control signal if the correct operation requires it. Hence, in some

states a multiplexor control will be set to 0.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.5.13 Finite-state machine controllers are typically implemented using a block of combinational

logic and a register to hold the current state. The outputs of the combinational logic are the next-state number

and the control signals to be asserted for the current state. The inputs to the combinational logic are the current

state and any inputs used to determine the next state. In this case, the inputs are the instruction register opcode

bits. Notice that in the finite-state machine used in this chapter, the outputs depend only on the current state, not

on the inputs. The elaboration below explains this in more detail..

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring branch and data

hazards. As in the design earlier in Chapter 4, we use separate instruction and data memories, which would be

implemented using separate caches as we describe in Chapter 5.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing to ALU operations

and address calculations. The code added to Figure e4.14.1 to handle bypassing is highlighted. Because these

bypasses only require changing where the ALU inputs come from, the only changes required are in the

combinational logic responsible for selecting the ALU inputs. (Continues on next page)

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.3 A behavioral definition of the five-stage RISC-V pipeline with stalls for loads when the

destination is an ALU instruction or effective address calculation.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.4 A behavioral definition of the five-stage RISC-V pipeline with stalls for loads when the

destination is an ALU instruction or effective address calculation.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.5 A behavioral specification of the multicycle RISC-V design.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.6 A Verilog version of the multicycle RISC-V datapath that is appropriate for synthesis.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.7 The RISC-V CPU using the datapath from Figure e4.14.6.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of pipeline

representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two

stages are identified in each clock cycle; normally, all five stages are occupied. The highlighted portions of the datapath are active in that

clock cycle. The load is fetched in clock cycle 1 and decoded in clock cycle 2, with the subtract fetched in the second clock cycle. To make

the figures easier to understand, the other pipeline stages are empty, but normally there is an instruction in every pipeline stage.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In

the third clock cycle in the top diagram, lw enters the EX stage. At the same time, sub enters ID. In the fourth clock

cycle (bottom datapath), lw moves into MEM stage, reading memory using the address found in EX/MEM at the

beginning of clock cycle 4. At the same time, the ALU subtracts and then places the difference into EX/MEM at the

end of the clock cycle.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.10 Single-cycle pipeline diagrams for clock cycles 5 (top diagram) and 6 (bottom diagram). In

clock cycle 5, lw completes by writing the data in MEM/WB into register 10, and sub sends the difference in EX/MEM

to MEM/WB. In the next clock cycle, sub writes the value in MEM/WB to register 11.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.11 Clock cycles 1 and 2. The phrase “before <i>” means the ith instruction before lw. The lw instruction in the top

datapath is in the IF stage. At the end of the clock cycle, the lw instruction is in the IF/ID pipeline registers. In the second clock cycle,

seen in the bottom datapath, the lw moves to the ID stage, and sub enters in the IF stage. Note that the values of the instruction

fields and the selected source registers are shown in the ID stage. Hence, register x1 and the constant 40, the operands of lw, are

written into the ID/EX pipeline register. The number 10, representing the destination register number of lw, is also placed in ID/EX.

The top of the ID/EX pipeline register shows the control values for ld to be used in the remaining stages. These control values can

be read from the lw row of the table in Figure 4.22

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.12 Clock cycles 3 and 4. In the top diagram, lw enters the EX stage in the third clock cycle, adding x1 and 40 to

form the address in the EX/MEM pipeline register. (The lw instruction is written lw x10, … upon reaching EX, because the identity of

instruction operands is not needed by EX or the subsequent stages. In this version of the pipeline, the actions of EX, MEM, and WB

depend only on the instruction and its destination register or its target address.) At the same time, sub enters ID, reading registers

x2 and x3, and the and instruction starts IF. In the fourth clock cycle (bottom datapath), lw moves into MEM stage, reading memory

using the value in EX/ MEM as the address. In the same clock cycle, the ALU subtracts x3 from x2 and places the difference into

EX/MEM, reads registers x4 and x5 during ID, and the or instruction enters IF. The two diagrams show the control signals being

created in the ID stage and peeled off as they are used in subsequent pipe stages.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.13 Clock cycles 5 and 6. With add, the final instruction in this example, entering IF in the top datapath, all

instructions are engaged. By writing the data in MEM/WB into register 10, lw completes; both the data and the register number are

in MEM/WB. In the same clock cycle, sub sends the difference in EX/MEM to MEM/WB, and the rest of the instructions move

forward. In the next clock cycle, sub selects the value in MEM/WB to write to register number 11, again found in MEM/WB. The

remaining instructions play follow-the-leader: the ALU calculates the OR of x6 and x7 for the or instruction in the EX stage, and

registers x8 and x9 are read in the ID stage for the add instruction. The instructions after add are shown as inactive just to

emphasize what occurs for the five instructions in the example. The phrase “after <i>” means the ith instruction after add.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, adding the values

corresponding to registers x8 and x9 during the EX stage. The result of the or instruction is passed from EX/MEM to MEM/WB in the

MEM stage, and the WB stage writes the result of the and instruction in MEM/WB to register x12. Note that the control signals are

deasserted (set to 0) in the ID stage, since no instruction is being executed. In the following clock cycle (lower drawing), the WB

stage writes the result to register x13, thereby completing or, and the MEM stage passes the sum from the add in EX/MEM to

MEM/WB. The instructions after add are shown as inactive for pedagogical reasons.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.15 Clock cycle 9. The WB stage writes the ALU result in MEM/WB into register x14, completing add and the five-

instruction sequence. The instructions after add are shown as inactive for pedagogical reasons.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.16 Clock cycles 3 and 4 of the instruction sequence on page 366.e26. The bold lines are those active in a clock

cycle, and the italicized register numbers in color indicate a hazard. The forwarding unit is highlighted by shading it when it is

forwarding data to the ALU. The instructions before sub are shown as inactive just to emphasize what occurs for the four instructions

in the example. Operand names are used in EX for control of forwarding; thus they are included in the instruction label for EX.

Operand names are not needed in MEM or WB, so … is used. Compare this with Figures e4.14.12 through e4.14.15, which show

the datapath without forwarding where ID is the last stage to need operand information.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.17 Clock cycles 5 and 6 of the instruction sequence on page 366.e26. The forwarding unit is highlighted when it

is forwarding data to the ALU. The two instructions after add are shown as inactive just to emphasize what occurs for the four

instructions in the example. The bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a

hazard.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.18 Clock cycles 2 and 3 of the instruction sequence on page 366.e26 with a load replacing sub. The bold lines

are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the … in the place of operands

means that their identity is information not needed by that stage. The values of the significant control lines, registers, and register

numbers are labeled in the figures. The and instruction wants to read the value created by the lw instruction in clock cycle 3, so the

hazard detection unit stalls the and and or instructions. Hence, the hazard detection unit is highlighted.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.19 Clock cycles 4 and 5 of the instruction sequence on page 366.e26 with a load replacing sub. The bubble is

inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit is

highlighted in clock cycle 5 because it is forwarding data from lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards

the address of the lw as if it were the contents of register x2; this is rendered harmless by the insertion of the bubble. The bold lines

are those active in a clock cycle, and the italicized register numbers in color indicate a hazard.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.14.20 Clock cycles 6 and 7 of the instruction sequence on page 366.e26 with a load replacing sub. Note that

unlike in Figure e4.14.17, the stall allows the lw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register

x4 for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU.

The bold lines show ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The instructions

after add are shown as inactive for pedagogical reasons.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.17.1 The Stretch computer, one of the first pipelined computers.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.17.2 The CDC 6600, the first supercomputer.

Copyright © 2021 Elsevier Inc. All rights reserved.

FIGURE e4.17.3 The IBM 360/91 pushed the state of the art in pipelined

execution when it was unveiled in 1966.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

Copyright © 2021 Elsevier Inc. All rights reserved.

