Figure 4.1 An abstract view of the implementation of the RISC-V subset showing the major functional units and the major
connections between them. All instructions start by using the program counter to supply the instruction address to the instruction memory.
After the instruction is fetched, the register operands used by an instruction are specified by fields of that instruction. Once the register operands
have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer
arithmetic-logical instruction), or an equality check (for a branch). If the instruction is an arithmetic-logical instruction, the result from the ALU
must be written to a register. If the operation is a load or store, the ALU result is used as an address to either load a value from memory into the
registers or store a value from the registers. The result from the ALU or memory is written back into the register file. Branches require the use of
the ALU output to determine the next instruction address, which comes either from the adder (where the PC and branch offset are summed) or
from an adder that increments the current PC by four. The thick lines interconnecting the functional units represent buses, which consist of
multiple signals. The arrows are used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show
when crossing lines are connected by the presence of a dot where the lines cross.
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Figure 4.2 The basic implementation of the RISC-V subset, including the necessary multiplexors and control lines. The

top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled by the gate
that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle multiplexor, whose
output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the data
memory (in the case of a load) for writing into the register file. Finally, the bottom-most multiplexor is used to determine whether the second ALU
input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction (for a load or store). The
added control lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.
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Figure 4.3 Combinational logic, state elements, and the clock are closely related. In a synchronous digital system, the
clock determines when elements with state will write values into internal storage. Any inputs to a state element must reach a
stable value (that is, have reached a value from which they will not change until after the clock edge) before the active clock
edge causes the state to be updated. All state elements in this chapter, including memory, are assumed positive edge-
triggered; that is, they change on the rising clock edge.

Copyright © 2021 Elsevier Inc. All rights reserved.



State
element

Combinational logic

Figure 4.4 An edge-triggered methodology allows a state element to be read and written in the same clock cycle without creating a
race that could lead to indeterminate data values. Of course, the clock cycle still must be long enough so that the input values are stable
when the active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggeredupdate of the state element. If
feedback were possible, this design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing

methodology and on structures like the one shown in this figure.
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Figure 4.5 Two state elements are needed to store and access instructions, and an adder is needed to compute the next instruction address.
The state elements are the instruction memory and the program counter. The instruction memory need only provide read access because the datapath
does not write instructions. Since the instruction memory only reads, we treat it as combinational logic: the output at any time reflects the contents of the
location specified by the address input, and no read control signal is needed. (We will need to write the instruction memory when we load the program;
this is not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the end of every clock cycle and thus
does not need a write control signal. The adder is an ALU wired to always add its two 32-bit inputs and place the sum on its output.
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Figure 4.6 A portion of the datapath used for fetching instructions and incrementing the program counter. The fetched
instruction is used by other parts of the datapath.
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Figure 4.7 The two elements needed to implement R-format ALU operations are the register file and the ALU. The register file contains all the
registers and has two read ports and one write port. The design of multiported register files is discussed in Section A.8 of Appendix A. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In contrast, a
register write must be explicitly indicated by asserting the write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e.,
the value to be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge-
triggered, our design can legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock cycle, while the
value written will be available to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas
the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 4 bits
wide, using the ALU designed in Appendix A. We will use the Zero detection output of the ALU shortly to implement conditional branches.
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Figure 4.8 The two units needed to implement loads and stores, in addition to the register file and ALU of Figure 4.7, are the data
memory unit and the immediate generation unit. The memory unit is a state element with inputs for the address and the write data, and a
single output for the read result. There are separate read and write controls, although only one of these may be asserted on

any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an invalid address can cause problems,
as we will see in Chapter 5. The immediate generation unit (ImmGen) has a 32-bit instruction as input that selects a 12-bit field for load, store,
and branch if equal that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is edge-
triggered for writes. Standard memory chips actually have a write enable signal that is used for writes. Although the write enable is not edge-
triggered, our edge-triggered design could easily be adapted to work with real memory chips. See Section A.8 of Appendix A for further

discussion of how real memory chips work.
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Figure 4.9 The portion of a datapath for a branch uses the ALU to evaluate the branch condition and a separate adder
to compute the branch target as the sum of the PC and immediate (the branch displacement). Control logic is used to
decide whether the incremented PC or branch target should replace the PC, based on the Zero output of the ALU.
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Figure 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how a single datapath can be
assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed, as described in the example.
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Figure 4.11 The simple datapath for the core RISC-V architecture combines the elements required by different instruction classes. The
components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store register, ALU operations, and branches)

in a single clock cycle. Just one additional multiplexor is needed to integrate branches.
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ALU control lines m

0000 AND
0001 OR
0010 add
0110 subtract

Instruction Desired ALU control
opcode Operation ALU action input

load word XXXXXXX 0010
sw 00 store word XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 AND 0000
R-type 10 or 0000000 110 OR 0001

Figure 4.12 How the ALU control bits are set depends on the ALUOp control bits and the different opcodes for the R-type
instruction. The instruction, listed in the first column, determines the setting of the ALUOp bits. All the encodings are shown in binary.
Notice that when the ALUOp code is 00 or 01, the desired ALU action does not depend on the funct7 or funct3 fields; in this case, we
say that we “don’t care” about the value of the opcode, and the bits are shown as Xs. When the ALUOp value is 10, then the funct7 and
funct3 fields are used to set the ALU control input. See Appendix A.
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ALUOp1 ALUOpO I[31] 1[30] 1[29] 1[28] 1[27] 1[26] I[25] I[14] 1[13] I[12] | Operation
X X X X X X X X X X 0010
0110
0010
0110
0000
0001

RS
X[x|x|[x|r|oO
o|lo|o|o|x
o|lo|r|o|x
o|lo|o|o|x
o|lo|o|o|x
o|lo|o|o|x
o|lo|o|o|x
o|lo|o|o|x
=1 E=I
Rrlr|o|o|x
o|lr|o|o|x

Figure 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and funct fields. Only the
entries for which the ALU control is asserted are shown. Some don’t-care entries have been added. For example, the ALUOp does
not use the encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. While we show all 10 bits of funct
fields, note that the only bits with different values for the four R-format instructions are bits 30, 14, 13, and 12. Thus, we only need
these four funct field bits as input for ALU control instead of all 10.
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(Bit position) 31:25

(@ Rtpe | funct7 | rs2 | st | funct3] rd | opcode |
(b) Hype | immediate[11:0] [ st [funct3 ] rd | opcode |
() Stype | immedi11:5] |  rs2 | rst [funct3| immed4:0] |  opcode |
(d) SBtype | immed12,10:5] |  rs2 | rst | funct3 [immed[4:1,11]]  opcode |

Figure 4.14 The four instruction classes (arithmetic, load, store, and conditional branch) use four different
instruction formats. (a) Instruction format for R-type arithmetic instructions (opcode = 51ten), which have three register
operands: rsl, rs2, and rd. Fields rs1 and rd are sources, and rd is the destination. The ALU function is in the funct3 and
funct? fields and is decoded by the ALU control design in the previous section. The R-type instructions that we implement
are add, sub, and, and or. (b) Instruction format for I-type load instructions (opcode = 3ten). The register rsl is the base
register that is added to the 12-bit immediate field to form the memory address. Field rd is the destination register for the
loaded value. (c) Instruction format for S-type store instructions (opcode = 35ten). The register rsl is the base register that
is added to the 12-bit immediate field to form the memory address. (The immediate field is split into a 7-bit piece and a
5-bit piece.) Field rs2 is the source register whose value should be stored into memory. (d) Instruction format for SB-type
conditional branch instructions (opcode = 99ten). The registers rs1 and rs2 compared. The 12-bit immediate address field is
sign-extended, shifted left 1 bit, and added to the PC to compute the branch target address. Figures 4.17 and 4.18 give the
rationale for the unusual bit ordering for SB-type.
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Figure 4.15 The MIPS, arithmetic instruction format, data transfer instruction format,

and their impact on the MIPS datapath. For MIPS arithmetic instructions using the R format, rd is the
destination register, rs is the first register operand, and rt is the second register operand. For MIPS load and
immediate instructions, rs is still the first register operand, but rt is now the destination register. Hence the
need of the 2:1 multiplexor to pick between the rd and rt fields to write the correct register.
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Name Field Comments

(Field size) 7 bits 5 bits 5 bits

R-type funct7 | rs2 rsi funct3 rd opcode Arithmetic instruction format
|-type immediate[11:0] rsi funct3 rd opcode Loads & immediate arithmetic
S-type immed[11:5] rs2 rsl funct3 | immed[4:0] opcode Stores

SB-type immed[12,10:5] rs2 rsi funct3 |immed[4:1,11] opcode Conditional branch format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional jump format
U-type immediate[31:12] rd opcode Upper immediate format

Figure 4.16 The actual RISC-V formats. Figure 4.16 introduces R-, |-, S-, and U-types, which are straightforward.
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Immediate Output Bit by Bit

31]30]29]28]27]26]25]24[23]22]21]20]19]18]17|16[15[14[13]12]11{10] 9[8[ 76 5[4 [3]2[1]0
Instruction Format| Immediate Input Bit by Bit
Load, Arith. Imm.| I [i31]i31]i31]i31]i31]i31]i31[i31]i31[i31[i31i31[i31]i31]i31[i31[i31[i31[i31]i31]i31[i30[i20[i28]i27 [i26|i25|i24]i23]i22]i21]i20
Store s [ I 1 1=t r=rsr=rer=r=rers =1 =1 * limaaol e sz
Cond. Branch s = [1=1=T*TT=1*T=1*T=1=T=0[=]=1T=1*1=1"1*=oles]ies|i2z|i26iz5]i2a] = | * = * To
Uncond. Jump ) “le el el e el |i30]i29]i28(i27(i26]i25(i24(i23]i22]i21(i20]i19]i18(i17|i16]i15]|i14(i13]i12] “
Load Upper Imm.| U | * [i30]i29]i28]i27]i26[i25[i24[i23]i22]i21i20[i10]i18]i17[i16]i15]i14]i13]it2] o [o [ o [ o Jo oo oo o]0
Unique Inputs 1122|1212 |]2|2]2]|]2|2|]2|]2]|]3|3[3]|]3|3|3|3|]3|4|4|4|4|4|4|4|4|4]|]4]|4]3

Figure 4.17 Inputs to immediate if hypotheticaly conditional branches use the S format, and if jumps, use the U
format.
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Immediate Output Bit by Bit

31]30]29]28]27]26]25][24[23]22]21]20]19]18]17|16[15[14[13]12]11{10] 9[8[ 76 5[4 [3 210
Instruction Format| Immediate Input Bit by Bit
Load, Arith. Imm.| I [i31]i31]i31]i31]i31]i31]i31[i31]i31[i31[i31]i31[i31]i31]i31[i31[i31[i31[i31]i31]i31[i30[i20[i28]i27 [i26|i25]i24[i23]i22]i21]i20
Store s (=== =121 1==T=r s = s =l =T * =T =T =] [ita]no] v i8] 17
Cond. Branch SB “ “ “ “ “ “ “ “ “ “ “ “ “ ¢ ¢ “ “ “ “ “ i7 “ “ “ “ “ “ “ “ “ “ 0
Uncond. Jump w T linelinsliazlisefias|izafinafiz2fizo] < [ < [ [“[“[“[“[“[“[“["~
Load Upper Imm.] U | “ [i30]i29]i28[i27]i26]i25]i24[i23]i22]i21]i2o] “ [ “ [ “[“[“[“[“[“[oJofoJoJofo]ofo]Jo]o]o
Unique Inputs 1[2]2]222]2]2]2]2]2]2[2[2]2]2]2]2]2]2]4]2]2]2[2[2[2[3[3][3][3]3

Figure 4.18 Inputs to immediate given that branches use the SB format and jumps use the UJ format, which is what
RISC-V uses.
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Figure 4.19 The datapath of Figure 4.11 with all necessary multiplexors and all control

lines identified. The control lines are shown in color. The ALU control block has also been added, which
depends on the funct3 field and part of the funct7 field. The PC does not require a write control, since it is
written once at the end of every clock cycle; the branch control logic determines whether it is written with

the incremented PC or the branch target address.
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Signal name Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is
written with the value on the Write data input.

ALUSrc The second ALU operand comes The second ALU operand is the sign-extended,

from the second register file output | 12 bits of the instruction.
(Read data 2).
PCSrc The PC is replaced by the output of | The PC is replaced by the output of the adder
the adder that computes the value | that computes the branch target.
of PC + 4.

MemRead None. Data memory contents designated by the
address input are put on the Read data
output.

MemWrite None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write | The value fed to the register Write data input

data input comes from the ALU. comes from the data memory.

Figure 4.20 The effect of each of the six control signals. When the 1-bit control to a twoway

multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control

is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element
can create timing problems. (See Appendix A for further discussion of this problem.)
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Figure 4.21 The simple datapath with the control unit. The input to the control unit is the 7-bit opcode field from the
instruction. The outputs of the control unit consist of two 1-bit signals that are used to control multiplexors (ALUSrc and
MemtoReg), three signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and
MemWrite), a 1-bit signal used in determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU
(ALUOpP). An AND gate is used to combine the branch control signal and the Zero output from the ALU; the AND gate output
controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming directly from the

Instruction [31-0]

register data?2

Write
data Registers

Instruction [30,14-12]

ALU
control

l

control unit. Thus, we drop the signal name in subsequent figures.
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R-format 0 0 1 0 0

Iw 1

1
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1 1 1 0
X 0 0 1
X 0 0 0

Figure 4.22 The setting of the control lines is completely determined by the opcode fields of the instruction. The
first row of the table corresponds to the R-format instructions (add, sub, and, and or). For all these instructions, the source
register fields are rs1 and rs2, and the destination register field is rd; this defines how the signals ALUSrc is set.
Furthermore, an R-type instruction writes a register (RegWrite = 1), but neither reads nor writes data memory. When the
Branch control signal is 0, the PC is unconditionally replaced with PC + 4; otherwise, the PC is replaced by the branch
target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indicate that the ALU
control should be generated from the funct fields. The second and third rows of this table give the control signal

settings for lw and sw. These ALUSrc and ALUORp fields are set to perform the address calculation. The MemRead and
MemWrite are set to perform the memory access. Finally, RegWrite is set for a load to cause the result to be stored in the rd
register. The ALUORp field for branch is set for subtract (ALU control = 01), which is used to test for equality. Notice that the
MemtoReg field is irrelevant when the RegWrite signal is O: since the register is not being written, the value of the data on
the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for

don’t care. This type of don’t care must be added by the designer, since it depends on knowledge of
how the datapath works.
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Figure 4.23 The datapath in operation for an R-type instruction, such as add x1, x2, x3. The control
lines, datapath units, and connections that are active are highlighted.
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Figure 4.24 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are
active are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control
would indicate a write rather than a read, the second register value read would be used for the data to store, and the
operation of writing the data memory value to the register file would not occur.
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Figure 4.25 The datapath in operation for a branch-if-equal instruction. The control lines, datapath units, and

connections that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is
used to select the next program counter from between the two candidates.
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Input or
output Signal name R-format
0

Inputs 1[6] 0 0 1
I[5] 1 0 1 1.

1[4] 1 0 0 0

1[3] 0 0 0 0

I[2] 0 0 0 0

I[1] i, i 1 1

1[0] 1, 1 1 1

Outputs ALUSrc 0 1 1 0
MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 i 0 0

MemWrite 0 0 i ! 0

Branch 0 0 0 1;

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

Figure 4.26 The control function for the simple single-cycle implementation is completely
specified by this truth table. The top seven rows of the table gives the combinations of input signals
that correspond to the four instruction classes, one per column, that determine the control output settings.
The bottom portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite
is asserted for two different combinations of the inputs. If we consider only the four opcodes shown in
this table, then we can simplify the truth table by using don’t cares in the input portion. For example, we
can detect an R-format instruction with the expression Op4 - Op5, since this is sufficient to distinguish the
R-format instructions from Iw, sw, and beq. We do not take advantage of this simplification, since the rest
of the RISC-V opcodes are used in a full implementation.
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Figure 4.27 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty

clothes to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30
minutes for their task. Sequential laundry takes 8 hours for four loads of washing, while pipelined laundry
takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four
resources on this two-dimensional time line, but we really have just one of each resource.
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Instruction | Register ALU Data Register Total
Instruction class fetch read operation | access write time

Load word (Iw) 200 ps 100 ps 200 ps 200 ps | 100 ps 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, 200 ps 100 ps 200 ps 100 ps 600 ps
and, or)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Figure 4.28 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no

delay.
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Program

execution ) 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T T
order
(in instructions)
w x1, 100(x4) '"sft;;’cc,:ion Reg| ALU 3‘25;25 Reg
Iw x2, 200(x4) 800 ps ]nsftéfccsm Reg| ALU a?:etzs Reg
Iw x3, 400(x4) 800 ps lnsft;;]sr:ion
800 ps
Program
execution . 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
Iw x1, 100(x4) 'nsft;l:f:on Reg| ALU affféis Reg
D — i D
Iw x2, 200(x4) 200ps | e Reg| ALU | 0% IReg
I x3, 400(x4) 200 ps Insflgqj;:m Red| ALU a?féis Reg

200 ps 200 ps 200 ps 200 ps 200 ps

Figure 4.29 Single-cycle, nonpipelined execution (top) versus pipelined execution

(bottom). Both use the same hardware components, whose time is listed in Figure 4.28. In this case, we see

a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure to
Figure 4.27. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage
would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, either
the ALU operation or the memory access. We assume the write to the register file occurs in the first half of the
clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.
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. 200 400 600 800 1000
Time T T T T T

add x1, x2, x3 IF 5 ID EEX MEM WB

Figure 4.29 Single-cycle, nonpipelined execution (top) versus pipelined execution

(bottom). Both use the same hardware components, whose time is listed in Figure 4.28. In this case, we see

a fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure to
Figure 4.27. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage
would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource, either
the ALU operation or the memory access. We assume the write to the register file occurs in the first half of the
clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.
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Program
execution ) 200 400 600 800 1000
order Time T T T T T

(in instructions) .
add x1, x2, x3 IF = [>) MEM WB |
sub x4, x1, x5 IF —= D EEX} MEM WB

Figure 4.31 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register

x1 read in the second stage of sub.
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Program

execution , 200 400 600 800 1000 1200 1400
order Time T T T T T

(in instructions) — .
Iw x1, 0(x2) IF —': ID MEM—Q\— WB
. \ i

f\/\,\ Y N SN, T
Cbubble (gjbble (@@g)\ ((bebte? Cbubble)
tTe) e et i ia ) s

sub x4, x1, X5 IF —= D i@—mw—@s;

Figure 4.32 We need a stall even with forwarding when an R-format instruction following

a load tries to use the data. Without the stall, the path from memory access stage output to execution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4.7 shows the details of what really happens in the case of a hazard.
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Program

execution Tim 200 400 600 800 1000 1200 1400
order ime T T T T T T T
(in instructions)

aan 56,56 "] [ro] ww [ 2o T

Instruction Data
e Ll 200 ps fetch Reg| AU access Reg
waﬁbubble/bub\@(bubbte Cw
or x7, x8, x9 <———————|Instruction Data
400 ps fetch Reg| ALU access |9

Figure 4.33 Pipeline showing stalling on every conditional branch as solution to control

hazards. This example assumes the conditional branch is taken, and the instruction at the destination of

the branch is the or instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.9. The effect on performance,
however, is the same as would occur if a bubble were inserted.
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Program

execution Time 200 400 600 800 1000 1200 1400
order ' ' ' I l I I
(in instructions)
addx4,x5,x6  |"0"|  [Reg| AW | 5% |Reg
Instruction Data
beR ¥LaR.40 m fetch Reg) ALY access | ®9
~————|Instruction Data
Iw x3, 400(x0) 200 ps| fetch Reg) ALl access |69

Program
execution Time 200 400 600 800 1000 1200 1400
order T T T T T T I
(in instructions)
Instructi Data
add X4' X5, x6 nsf:tlghlon Reg ALy access Reg
Instruction Data
beq x1, x0, 40 m fetch Reg ALY access Reg
Tt \3
bubble/( bubble/( bubble/( bubble/( bubble
O
> or x7, x8, x9 <+———————————=lInstruction Data
400 ps fetch Reg ARG access | &9

Figure 4.34 Predicting that branches are not taken as a solution to control hazard. The

top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when

the branch is taken. As we noted in Figure 4.33, the insertion of a bubble in this fashion simplifies what actually
happens, at least during the first clock cycle immediately following the branch. Section 4.9 will reveal the details.
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Figure 4.35 The single-cycle datapath from Section 4.4 (similar to Figure 4.21). Each step of the instruction
can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-
back step, shown in color, which sends either the ALU result or the data from memory to the left to be written into
the register file. (Normally we use color lines for control, but these are data lines.)
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Time (in clock cycles)

Program
execution CC1
order

| |

| |

| |

| |

(in instructions) | : :
— | | -
Iw x, 100(x4) : '—'—ﬁRe DM[—+—Reg
J

| |

| |

I

|

I

|

|

I

Iw x2, 200(x4)

Iw x3, 400(x4)

Figure 4.36 Instructions being executed using the single-cycle datapath in Figure 4.35,

assuming pipelined execution. Similar to Figures 4.30 through 4.32, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in Figure
4.48. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for the
register file and sign extender in the instruction decode/register file read stage (ID), and so on. To maintain
proper time order, this stylized datapath breaks the register file into two logical parts: registers read during
register fetch (ID) and registers written during write back (WB). This dual use is represented by drawing

the unshaded left half of the register file using dashed lines in the ID stage, when it is not being written, and
the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we assume the
register file is written in the first half of the clock cycle and the register file is read during the second half.
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IF/ID ID/IEX EX/MEM MEM/WB

—_—
4 —> ’b
—
L0
L
u PC [-@—»-|Address Read
x register 1 N ——
—\ 1 data 1
Read Zero —
register 2 ALU
Registers Road ALY Address Read L 1L _o.(7
Write data2 " OM result data M
register
9 u Data :

Instruction
Write % memory

] Instruction
RN

memory
data 1

J 0
Imm |
Gen

Figure 4.37 The pipelined version of the datapath in Figure 4.35. The pipeline registers, in color, separate each
pipeline stage. They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it
separates the instruction fetch and instruction decode stages. The registers must be wide enough to store all the
data corresponding to the lines that go through them. For example, the IF/ID register must be 96 bits wide,
because it must hold both the 32-bit instruction fetched from memory and the incremented 64-bit PC address.

We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain

256, 193, and 128 bits, respectively.
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Figure 4.38 IF and ID: First and second pipe stages of an instruction, with the active portions of the
datapath in Figure 4.37 highlighted. The highlighting convention is the same as that used in Figure 4.30. As in
Section 4.2, there is no confusion when reading and writing registers, because the contents change only on the
clock edge. Although the load needs only the top register in stage 2, it doesn’t hurt to do potentially extra work, so it
sign-extends the constant and reads both registers into the ID/EX pipeline register. We don’t need

all three operands, but it simplifies control to keep all three.
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IF/ID ID/EX EX/MEM MEM/WB

L0
M
u PC —@—>| Address c Read
—
X 2 register 1 Read L
= S data 1
5 Read -
Instruction i_: register 2 Read
—¢ Registers i~ 1
memory Write Read Address data ]
register data 2 Data u
—-| Write memory Ox
data

Write
data
Imm -
Gen

Figure 4.39 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in
Figure 4.37 used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed

in the EX/MEM pipeline register.
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Iw
Memory

Memo

IFAD IDEEX EXMEM MEMWB

—
4 — h Add Sum
—

83 37 3%
a3 23 2a
g

53

Figure 4.40 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions
of the datapath in Figure 4.37 used in this pipe stage. Data memory is read using the address in the EX/MEM
pipeline registers, and the data are placed in the MEM/WB pipeline register. Next, data are read from the MEM/WB
pipeline register and written into the register file in the middle of the datapath. Note: there is a bug in this design

that is repaired in Figure 4.43.
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IF/ID ID/EX EX/MEM MEM/WB

L0
M
u PC [-@—| Address Read
X register 1
L\ 4
Read
Instruction register 2
memory, Write ReglstersRead »

Read
data 1

[ Instruction

register data 2

—>| Write
data

Read
Address data ™ >
Data
memory

Write
data
a1

Gen

Figure 4.41 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in
Figure 4.39, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage.
Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the second
register only on a store instruction to make the pipeline easier to understand.
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W,

Memory

IFID IDEEX EXIMEM MEMWE

—
4 —>] b Add Sum|
—

sw

Write-back

IF/ID ID/EX EX/IMEM MEMWB

—»ﬁ
=0 Add Sum|
—

Instruction
memory 2

Figure 4.42 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data
are written into data memory for the store. Note that the data come from the EX/MEM pipeline register and that
nothing is changed in the MEM/WB pipeline register. Once the data are written in memory, there is nothing left for

the store instruction to do, so nothing happens in stage 5.
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IF1ID ID/EX EX/MEM MEM/WB

memory

Figure 4.43 The corrected pipelined datapath to handle the load instruction properly. The write register
number now comes from the MEM/WB pipeline register along with the data. The register number is passed from
the ID pipe stage until it reaches the MEM/ WB pipeline register, adding five more bits to the last three pipeline
registers. This new path is shown in color.
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> register 1 —
L data 1
Read

register 2

Registers Read
memo —4 Read Address Bl >
& Write data2[ " data
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g Data
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data
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Figure 4.44 The portion of the datapath in Figure 4.43 that is used in all five stages of a load instruction.
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Time (in clock cycles)
CC1 CcC2 CC3 CcC4 CC5 CC6 CcCc7 CcCs8 cco

Program
execution
order

(in instructions) == = =

w0, 40t Tm e

sub x11, x2, x3 @— ‘EER:%I: _E%E
add x12, x3, x4 @— —E{R:GEI: —Ee:g,:
S - s

514,585 A-lg @ |-

Figure 4.45 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation
shows the complete execution of instructions in a single figure. Instructions are listed in instruction execution order
from top to bottom, and clock cycles move from left to right. Unlike Figure 4.26, here we show the pipeline registers
between each stage. Figure 4.59 shows the traditional way to draw this diagram.
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Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5s CcCé6 Ccc7 CcCs8 CcCco

Program
execution
order
(in instructions)
Iw x10, 40(x1) |ns:;1;t1lon Injér:occt’n:n Execution a[(?caetzs Write-back
sub x11, x2, x3 Insft;zé::‘lon In;g:;élgn Execution alc?(?et:s Write-back
Instruction | Instruction g Data ;
add x12, x3, x4 fetch o tois Execution P Write-back
Instruction | Instruction . Data .
Iw x13, 48(x1) fetch decode Execution access Write-back
Instruction | Instruction . Data .
add x14, x5, x6 fetch decode Execution SCEESES Write-back

Figure 4.46 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.45.

Copyright © 2021 Elsevier Inc. All rights reserved.



I add x14, x5, x6 | Iw x13, 48(x1) l add x12, x3, x4 | sub x11, x2, x3 | Iw x10, 40(x1) I
| Instruction fetch | Instruction decode | Execution I Memory | Write-back |
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Figure 4.47 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.45
and 4.46. As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

Instruction
memory
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IF/ID ID/EX EX/MEM MEM/WB

L0 RegWrite
M L
u PC ——(Address Read Read
: ter 1 ea
X register Head L—|

Read
Instruction reglswégzgis(ers

memory Write Read
register data 2

MemtoReg

1 Instruction

—| Write
data

Instruction

[31-0] Imm
Gen

Instruction

[30, 14-12]

Instruction

[11-7)

oxc =2~

MemRead

Figure 4.48 The pipelined datapath of Figure 4.43 with the control signals identified. This datapath borrows
the control logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now
need funct fields of the instruction in the EX stage as input to ALU control, so these bits must also be included in
the ID/EX pipeline register.
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Desired | ALU control
Instruction operation ALU action input
Iw 00 XXX add

load word XXXXXXX 0010
swW 00 store word XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 191 AND 0000
R-type 10 or 0000000 110 OR 0001

Figure 4.49 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on
the ALUOp control bits and the different opcodes for the R-type instruction.
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Signal name Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is written with the value
on the Write data input.
ALUSrc The second ALU operand comes from the second | The second ALU operand is the sign-extended, 12 bits of the
register file output (Read data 2). instruction.
PCSrc The PC is replaced by the output of the adder that | The PC is replaced by the output of the adder that computes
computes the value of PC + 4. the branch target.
MemRead None. Data memory contents designated by the address input are
put on the Read data output.
MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.
MemtoReg The value fed to the register Write data input The value fed to the register Write data input comes from the
comes from the ALU. data memory.

Figure 4.50 A copy of Figure 4.20. The function of each of six control signals is defined. The ALU control lines (ALUOp) are
defined in the second column of Figure 4.49. When a 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the
input corresponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled
by an AND gate in Figure 4.48. If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0.
Control sets the Branch signal only during a beq instruction; otherwise, PCSrc is set to 0.

Copyright © 2021 Elsevier Inc. All rights reserved.



Execution/address
calculation stage Memory access stage Write-back stage
control lines control lines control lines

Mem- Mem- Reg- Memto-
ALUOp ALUSrc | Branch Read Write Write Reg

R-format
Iw 00 1 0 1 0 1 1
swW 00 i | 0 0 1. 0 X
beq 01 0 4 0 0 0 X

Figure 4.51 The values of the control lines are the same as in Figure 4.22, but they
have been shuffled into three groups corresponding to the last three pipeline
stages.

Copyright © 2021 Elsevier Inc. All rights reserved.



Instruction| ‘\ =
1 Control ‘ M [ . |WB
- T T i
\\ // EX == M el WB [ ——
N A ——
IF/ID ID/EX EX/MEM MEM/WB

Figure 4.52 The seven control lines for the final three stages. Note that two of the seven
control lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM
pipeline register extended to hold the control lines; three are used during the MEM stage, and the last two are

passed to MEM/WB for use in the WB stage.
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Figure 4.53 The pipelined datapath of Figure 4.48, with the control signals connected to the control
portions of the pipeline registers. The control values for the last three stages are created during the instruction
decode stage and then placed in the ID/EX pipeline register. The control lines for each pipe stage are used, and
remaining control lines are then passed to the next pipeline stage.
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Value of CcC1 Ccc2 CC3 CC4 CC5 CC6 CcC7 CcCs8 CC9
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add x14, x2, x2

sw x15, 100(x2) [I\B——QILReg :D~ ||' Re_gJ:

Figure 4.54 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle
1. The first instruction writes into x2, and all the following instructions read x2. This register is written in clock cycle
5, so the proper value is unavailable before clock cycle 5. (A read of a register during a clock cycle returns the
value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top
datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data
hazards.
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Time (in clock cycles)
cCA CC2 CC3 (CccC4 CcC5 CcCB CC7 cCC8 CCHO
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Program
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sub x2, x1, x3
and x12, x2, x5 —Ee_g:
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D

sw x15, 100(x2) E@_'E‘E@: ®_ m I e:gj.

or x13, x6, x2

add x14, x2, x2

Figure 4.55 The dependences between the pipeline registers move forward in time, so it is possible to
supply the inputs to the ALU needed by the and instruction and or instruction by forwarding the results
found in the pipeline registers. The values in the pipeline registers show that the desired value is available
before it is written into the register file. We assume that the register file forwards values that are read and written
during the same clock cycle, so the add does not stall, but the values come from the register file instead of a
pipeline register. Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why
clock cycle 5 shows register x2 having the value 10 at the beginning and -20 at the end of the clock cycle.
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Figure 4.56 On the top are the ALU and pipeline registers before adding forwarding. On
the bottom, the multiplexors have been expanded to add the forwarding paths, and we show the forwarding

unit. The new hardware is shown in color. This figure is a stylized drawing, however, leaving out details from
the full datapath such as the sign extension hardware.
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ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

Figure 4.57 The control values for the forwarding multiplexors in Figure 4.56. The signed immediate that is
another input to the ALU is described in the Elaboration at the end of this section.
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Figure 4.58 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure
4.53, the additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however,
leaving out details from the full datapath, such as the branch hardware and the sign extension hardware.
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Figure 4.59 A close-up of the datapath in Figure 4.56 shows a 2:1 multiplexor, which has been added to
select the signed immediate as an ALU input.
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Time (in clock cycles)
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Figure 4.60 A pipelined sequence of instructions. Since the dependence between the load and the following
instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must
result in a stall by the hazard detection unit.
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Time (in clock cycles)
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e
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and x4, x2, x5

or x8, x2, x6

add x9, x4, x2

Figure 4.61 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by
changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but
its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise, the or instruction is
fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the unstalled clock cycle 4 position). After
insertion of the bubble, all the dependences go forward in time and no further hazards occur.

Copyright © 2021 Elsevier Inc. All rights reserved.



Hazard \ ID/EX.MemRead

detection
unit
2
% ID/EX
n m - r wa EX/MEM
. Control u M wB I—I\fEM/WB
T X == - ity
= IF/ID 0— L EX \_. M WB|—
o == | —
M
M
u
S X
B Registers e/
2 AForwardA ™ T
3 ) ALU=
PC Instruction = M
memory i Data -
memo
x ry
Ne s
ForwardB
IF/ID.RegisterRs1
IF/ID.RegisterRs2
IF/ID.RegisterRd Rd
Rs1 Forwarding -‘
m‘*

Figure 4.62 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection
unit, and the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate
and branch logic are missing— this drawing gives the essence of the forwarding hardware requirements.
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Time (in clock cycles)
CC1 CC2 CC3 CcC4 CC5s CC6 cc7 CC8 CC9

Program
execution
order

(in instructions)

40 beq x1, x0, 16

| —

44 and x12, x2, x5
48 or x13, x6, x2
52 add x14, x2, x2

—

| 72 1w x4, 100(x7)

\

Figure 4.63 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, ...)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle
4 for the beq instruction above—the three sequential instructions that follow the branch will be fetched and begin execution.
Without intervention, those three following instructions will begin execution before beq branches to Iw at location 72. (Figure
4.33 assumed extra hardware to reduce the control hazard to one clock cycle; this figure uses the nonoptimized datapath.)
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Figure 4.64 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the
next PC address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the
instruction at location 72 being fetched and the single bubble or nop instruction in the pipeline because of the taken

branch.
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Not taken

Predict taken Predict taken
Taken
Not taken \ Taken
Not taken
Predict not taken ) Predict not taken

Taken

Not taken

Figure 4.65 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that

strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of

its range as the division between taken and not taken.
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Figure 4.66 The final datapath and control for this chapter. Note that this is a stylized figure rather than a
detailed datapath, so it's missing the ALUsrc Mux from Figure 4.55 and the multiplexor controls from Figure 4.53.
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Figure 4.67 The datapath with controls to handle exceptions. The key additions include a new input with the
value 0000 00001C09 0000hex in the multiplexor that supplies the new PC value; an SCAUSE register to record
the cause of the exception; and an SEPC register to save the address of the instruction that caused the exception.
The 0000 0000 1C09 0000hex input to the multiplexor is the initial address to begin fetching instructions in the

event of an exception.
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Figure 4.68 The result of an exception due to hardware malfunction in the add instruction. The exception is detected
during the EX stage of clock 6, saving the address of the add instruction in the SEPC register (4Chex). It causes all the Flush
signals to be set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7
shows the instructions converted to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—
sw x26, 1000(x0)—from instruction location 0000 0000 1C09 0000hex. Note that the and and or instructions, which are prior

to the add, still complete.
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ALU or branch instruction IF ID EX MEM | WB

Load or store instruction IF ID EX MEM | WB

ALU or branch instruction IF ID EX MEM | WB

Load or store instruction IF ID EX MEM | WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM | WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

Figure 4.69 Static two-issue pipeline in operation. The ALU and data transfer instructions

are issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the
register writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a

precise exception model, which become more difficult in multiple-issue processors.
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Figure 4.70 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits
from instruction memory, two more read ports and one more write port on the register file, and another ALU.
Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything else.

Copyright © 2021 Elsevier Inc. All rights reserved.



- ALU or branch instruction Data transfer instruction m

Loop: Iw x31, 0(x20)
addi x20, x20, -4
add x31, x31, x21
b1t x22, x20, Loop sw x31, 4(x20)

rw[n|k

Figure 4.71 The scheduled code as it would look on a two-issue RISC-V pipeline. The
empty slots are no-ops. Note that since we moved the addi before the sw, we had to adjust sw’s offset by 4.
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- ALU or branch instruction Data transfer instruction m

Loop: addi x20, x20, w x28, O(XZO) 1
Tw x29, 12(x20) 2

add x28, x28, x21 Tw x30, 8(x20) 3

add x29, x29, x21 1w x31, 4(x20) 4

add x30, x30, x21 sw x28, 16(x20) 5

add x31, x31, x21 sw x29, 12(x20) 6

sw x30, 8(x20) 7

b1t x22, x20, Loop sw x31, 4(x20) 8

Figure 4.72 The unrolled and scheduled code of Figure 4.71 as it would look on a static two-issue RISC-V
pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements x20 by 16, the addresses
loaded are the original value of x20, then that address minus 4, minus 8, and

minus 12.
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Figure 4.73 The three primary units of a dynamically scheduled pipeline. The final step
of updating the state is also called retirement or graduation.
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Micietrocessor T Clock Pipeline Issue Out-of-Order/ Cores/ Povier
P Rate Stages Width Speculation Chip

Intel 486 1989 25 MHz i

Intel Pentium 1993 66 MHz 5 2 No 1 10W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 4. 29W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103w
Intel Core 2006 3000 MHz 14 4 Yes 2 75W
Intel Core i7 Nehalem 2008 3600 MHz 14 4 Yes 2-4 87W
Intel Core Westmere 2010 3730 MHz 14 4 Yes 6 130W
Intel Core i7 Ivy Bridge 2012 3400 MHz 14 4 Yes 6 130W
Intel Core Broadwell 2014 3700 MHz 14 4 Yes 10 140W
Intel Core i9 Skylake 2016 3100 MHz 14 4 Yes 14 165W
Intel Ice Lake 2018 4200 MHz 14 4 Yes 16 185W

Figure 4.74 Record of Intel Microprocessors in terms of pipeline complexity, number of
cores, and power. The Pentium 4 pipeline stages do not include the commit stages. If we
included them, the Pentium 4 pipelines would be even deeper.
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Figure 4.75 The basic structure of the A53 integer pipeline has eight stages: F1 and F2 fetch the instruction, D1
and D2 do the basic decoding, and D3 decodes more complex instructions and is overlapped with the first stage
of the execution pipeline (ISS). After ISS, the Ex1, EX2, and WB stages complete the integer pipeline. Branches use four
different predictors depending on type. The floating-point execution pipeline is 5 cycles deep in addition to the 5 cycles
needed for fetch and decode, yielding 10 stages total. AGU stands for address generation unit and TLB for transaction
lookaside buffer (See Chapter 5). The NEON unit performs the ARM SIMD instructions of the same

name. (From Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA, 2018,
Morgan Kaufmann.)
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Figure 4.76 Misprediction rate of the A53 branch predictor for SPECint2006. (Adapted from Hennessy JL,
Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA, 2018, Morgan Kaufmann.)
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Figure 4.77 Wasted work due to branch misprediction on the A53. Because the A53 is an in-order machine, the
amount of wasted work depends on a variety of factors including data dependences and cache misses, both of
which will cause a stall. (Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e,
Cambridge MA, 2018, Morgan Kaufmann.)
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Figure 4.78 The estimated composition of the CPl on the ARM A53 shows that pipeline

stalls are significant but outweighed by cache misses in the poorest-performing programs

(Chapter 5). These are subtracted from the CPl measured by a detailed simulator to obtain the pipeline
stalls. Pipeline stalls include all three hazards. (From Hennessy JL, Patterson DA: Computer architecture: A
guantitative approach, 6e, Cambridge MA, 2018, Morgan Kaufmann.)
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Figure 4.79 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14 stages, with
branch mispredictions typically costing 17 cycles and the extra few cycles likely due to time to reset the branch predictor. This design can
buffer 72 loads and 56 stores. The six independent functional units can each begin execution of a ready micro-operation in the same
cycle. Up to four micro-operations can be processed in the register-renaming table. The first i7 processor was introduced in 2008; the i7
6700 is the sixth generation. The basic structure of the i7 is similar, but successive generations have enhanced performance by changing
cache strategies (Chapter 5), increasing memory bandwidth, expanding the number of instructions in flight, enhancing branch prediction,
and improving graphics support. (From Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge MA,

2018, Morgan Kaufmann.)
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Figure 4.80 The CPI for the SPECCPUINnt2006 benchmarks on the i7 6700. The data in this

section were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.
(Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e, Cambridge
MA, 2018, Morgan Kaufmann.)
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Figure 4.81 The misprediction rate for the integer SPECCPU2006 benchmarks on the Intel Core i7 6700.
The misprediction rate is computed as the ratio of completed branches that are mispredicted versus all completed
branches. (Adapted from Hennessy JL, Patterson DA: Computer architecture: A quantitative approach, 6e,
Cambridge MA, 2018, Morgan Kaufmann.)
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1. #include <x86intrin.h>

2 i i JNROLL (4)

=

4., void dgemm (int n, double* A, double* B, double* C)

5: 1

6. for (int 0 i <nsy i+ I 3)

Ts for (int j = 0; j < n; ++3){

8. _m5 1 UNROLL] ;

9 nt -0; r<UNROLL; r++)

10. clr] = mm512 load pd(C+i+r*8+j*n); //[ UNROLL];
7%

12. for( int k = 0; k < n; k++ )

13 {

14. _m512d bb = mm512 broadcastsd pd( _mm load sd(B+j*n+k));
15 for (int r=0;r<UNROLL; r++)

16. c[r] = mm512 fmadd pd( mm512 load pd(A+n*k+r*8+i), bb, clr]);
17 }

18.

19. (int r=0; r<UNFE PEXE)

20 - _mm512 store pd(C+i+r*8+j*n, clr]);

21. }

22. }

Figure 4.82 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel
instructions for the x86 (Figure 3.20) and loop unrolling to create more opportunities for instruction-level
parallelism. Figure 4.96 shows the assembly language produced by the compiler for the inner loop, which unrolls
the three for-loop bodies to expose instruction-level parallelism.
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1 vmovapd ($rll), $zmm4 # Load 8 elements of C into %zmm4
2 mov $rbx, $rex # register %rcx = %rbx

3 xor Seax, seax # register %eax = 0

4 vmovapd 0x20(%rll), %zmm3 # Load 8 elements of C into %zmm3
5 vmovapd 0x40 (%rll), $zmm2 # Load 8 elements of C into %zmm2
6 vmovapd 0x60(%rll), $zmml # Load 8 elements of C into %zmml
i vbroadcastsd (%rax, %r8,8),%zmm0 # Make 8 copies of B element in %zmmO

# register %rax = %rax + 8

8 add $0x8, $rax

9 vimadd231lpd (%rcx),%zmm0, 3zmm4 # Parallel mul & add %zmmO, %$zmmé
10 vfmadd231pd 0x20 ($rcx), $zmm0, $zmm3 # Parallel mul & add %zmmO, %$zmm3
11 vfmadd231lpd 0x40 ($rcx), $zmm0, $zmm2 # Parallel mul & add %zmm0, %zmm2
12 vfmadd23lpd 0x60 (3rcx), %$zmm0, $zmml # Parallel mul & add %zmm0, %zmml
13 add 319, $rcx # register %rcx = %$rcx

14 cmp $rl0, $rax # compare %rl0 to %rax

15 jne 50 <dgemm+0x50> # jump if not %rl0 != %rax

16 add $0x1l, %esi # register % esi = % esi + 1

17 vmovapd szmm4, (%rll) # Store %$zmm4 into 8 C elements
18 vmovapd $zmm3, 0x20(%rll) # Store %$zmm3 into 8 C elements
19 vmovapd szmm2, 0x40(%rll) # Store %$zmm2 into 8 C elements
20 vmovapd %$zmml, 0x60 (%rll) # Store %$zmml into 8 C elements

Figure 4.83 The x86 assembly language for the body of the nested loops generated by compiling the
unrolled C code in Figure 4.82.
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Register #
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register

FIGURE e4.5.1 The high-level view of the multicycle datapath. This picture shows the key elements of the
datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these
shared units. The use of shared functional units requires the addition or widening of multiplexors as well as new
temporary registers that hold data between clock cycles of the same instruction. The additional registers are the
Instruction register (IR), the Memory data register (MDR), A, B, and ALUOut.
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FIGURE e4.5.2 Multicycle datapath for RISC-V handles the basic instructions. Although this datapath
supports normal incrementing of the PC, a few more connections and a multiplexor will be needed for branches
and jumps; we will add these shortly. The additions versus the single-clock datapath include several registers (IR,
MDR, A, B, ALUOut), a multiplexor for the memory address, a multiplexor for the top ALU input, and expanding the
multiplexor on the bottom ALU input into a four-way selector. These small additions allow us to remove two adders

and a memory unit.
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FIGURE e4.5.3 The multicycle datapath from Figure 4.28 with the control lines shown. The signals ALUOp
and ALUSrcB are 2-bit control signals, while all the other control lines are 1-bit signals. Neither register A nor B
requires a write signal, since their contents are only read on the cycle immediately after it is written. The memory
data register has been added to hold the data from a load when the data returns from memory. Data from a load
returning from memory cannot be written directly into the register file since the clock cycle cannot accommodate
the time required for both the memory access and the register file write. The MemRead signal has been moved to
the top of the memory unit to simplify the figures. The full set of datapaths and control lines for branches will be

added shortly.
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FIGURE e4.5.4 The complete datapath for the multicycle implementation together with the necessary

control lines. The control lines of Figure e4.5.3 are attached to the control unit, and the control and datapath
elements needed to effect changes to the PC are included. The major additions from Figure 4.29 include the

multiplexor used to select the source of a new PC value; gates used to combine the PC write signals; and the
control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a
conditional branch should be taken.
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Actions of the 1-bit control signals

Effect when deasserted Effect when asserted

RegWrite None. The general-purpose register selected by the Write register number is
written with the value of the Write data input.
ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register.
MemRead None. Content of memory at the location specified by the Address input is put
on Memory data output.
MemWrite None. Memory contents at the location specified by the Address input is
replaced by the value on the Write data input.
MemtoReg The value fed to the register file Write data input | The value fed to the register file Write data input comes from the MDR.
comes from ALUOut.
lorD The PC is used to supply the address to the ALUOut is used to supply the address to the memory unit.
memory unit.
IRWrite None. The output of the memory is written into the IR.
PCWrite None. The PC is written; the source is controlled by PCSource.
PCWriteCond None. The PC is written if the Zero output from the ALU is also active.

Actions of the 2-bit control signals

e

ALUOp 00 The ALU performs an add operation.
01 The ALU performs a subtract operation.
10 The funct field of the instruction determines the ALU operation.
ALUSrcB 00 The second input to the ALU comes from the B register.
01 The second input to the ALU is the constant 4.
10 The second input to the ALU is the immediate generated from the IR.
PCSource 00 Output of the ALU (PC + 4) is sent to the PC for writing.
01 The contents of ALUOut (the branch target address) are sent to the PC for writing.
10 The jump target address (IR[25:0] shifted left 2 bits and concatenated with
PC + 4[31:28]) is sent to the PC for writing.

FIGURE e4.5.5 The action caused by the setting of each control signal in Figure e4.5.4 on page 323. The
top table describes the 1-bit control signals, while the bottom table describes the 2-bit signals. Only those control
lines that affect multiplexors have an action when they are deasserted. This information is similar to that in Figure
5.16 on page 306 for the single-cycle datapath, but adds several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been replaced
(PCSrc and Branch).
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Action for R-type Action for memory Action for
Step name instructions reference instructions branches

Instruction fetch IR <= Memory[PC]
PC<=PC+4
Instruction decode/register fetch A<= Reg [IR[19:15]]

B <= Reg [IR[24:20]]
ALUOut <= PC + immediate

Execution, address computation, ALUOut <=AopB ALUOut <= A + immediate if (A ==B)
branch/jump completion PC <= ALUOut
Memory access or R-type Reg [IR[11:7]] <= Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] <= B
Memory read completion Load: Reg[IR[11:7]] <= MDR

FIGURE e4.5.6 Summary of the steps taken to execute any instruction class. Instructions take from three to
five execution steps. The first two steps are independent of the instruction class. After these steps, an instruction
takes from one to three more cycles to complete, depending on the instruction class. The empty entries for the
Memory access step or the Memory read completion step indicate that the particular instruction class takes fewer
cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction
completes, so these cycles are not idle or wasted. As mentioned earlier, the register file actually reads every cycle,
but as long as the IR does not change, the values read from the register file are identical. In particular, the value
read into register B during the Instruction decode stage, for a branch or R-type instruction, is the same as the value
stored into B during the Execution stage and then used in the Memory access stage for a store word instruction.
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Start

! ¢

Instruction fetch/decode and register fetch
(Figure e4.5.8)

|
; l l

Memory access R-type instructions Branch instruction
instructions (Figure e4.5.10) (Figure e4.5.11)
(Figure e4.5.9)

FIGURE e4.5.7 The high-level view of the finite-state machine control. The first steps are independent of the
instruction class; then a series of sequences that depend on the instruction opcode are used to complete each
instruction class. After completing the actions needed for that instruction class, the control returns to fetch a new
instruction. Each box in this figure may represent one to several states. The arc labeled Start marks the state in
which to begin when the first instruction is to be fetched.
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MemRead
ALUSrcA=0

lorD=0
IRWrite ALUSrcA=0
Start ALUSIrcB = 01 ALUSIcB = 10
ALUOp =00 ALUOp =00
PCWrite
PCSource =0

Memory reference FSM R-type FSM Branch FSM
(Figure e4.5.9) (Figure e4.5.10) (Figure 4.37)

FIGURE e4.5.8 The instruction fetch and decode portion of every instruction is identical. These states
correspond to the top box in the abstract finite-state machine in Figure 4.33. In the first state we assert two signals
to cause the memory to read an instruction and write it into the Instruction register (MemRead and IRWrite), and
we set lorD to 0 to choose the PC as the address source. The signals ALUSrcA, ALUSrcB, ALUOp, PCWrite, and
PCSource are set to compute PC + 4 and store it into the PC. (It will also be stored into ALUOut, but never used
from there.) In the next state, we compute the branch target address by setting ALUSrcB to 11 (causing the shifted
and sign-extended lower 16 bits of the IR to be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store
the result in the ALUOut register, which is written on every cycle. There are four next states that depend on the
class of the instruction, which is known during this state. The control unit input, called Op, is used to determine
which of these arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly
important for signals that control writes. For multiplexor controls, lack of a specific setting indicates that we do not
care about the setting of the multiplexor
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From state 1

(Op = 'LW") or (Op = 'SW')

Memory address computation

ALUSrcA=1
ALUSrcB =10
ALUOp =00

MemRead
lorD = 1

MemWrite
lorD =1

RegWrite
MemtoReg =1
RegDst =0

To state 0
(Figure e4.5.8)

FIGURE e4.5.9 The finite-state machine for controlling memory reference instructions has four states.
These states correspond to the box labeled “Memory access instructions” in Figure e4.5.7. After performing a
memory address calculation, a separate sequence is needed for load and for store. The setting of the control
signals ALUSrcA, ALUSrcB, and ALUOp is used to cause the memory address computation in state 2. Loads
require an extra state to write the result from the MDR (where the result is written in state 3) into the register file.
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From state 1

(Op = R-type)

ecution

ALUSIrcA =1
ALUSrcB = 00
ALUOp =10

RegDst =1
RegWrite
MemtoReg = 0

To state 0
(Figure e4.5.8)

FIGURE e4.5.10 R-type instructions can be implemented with a simple two-state finitestate machine. These
states correspond to the box labeled “R-type instructions” in Figure €4.5.7. The first state causes the ALU operation
to occur, while the second state causes the ALU result (which is in ALUOut) to be written in the register file. The
three signals asserted during state 7 cause the contents of ALUOuUt to be written into the register file in the entry
specified by the rd field of the Instruction register.
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From state 1

ALUSrcA=1
ALUSIcB = 00
ALUOp = 01
PCWriteCond
PCSource = 1

To state 0
(Figure e4.5.8)

FIGURE e4.5.11 The branch instruction requires a single state. The first three outputs that are asserted cause
the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals PCSource and
PCWriteCond perform the conditional write if the branch condition is true. Notice that we do not use the value
written into ALUOut; instead, we use only the Zero output of the ALU. The branch target address is read from
ALUOut, where it was saved at the end of state 1.
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MemRead
ALUSIcA=0
lorD=0

ALUSrcA=0
ALUSrcB = 10
ALUOp =00

IRWrite
ALUSIcB =01
ALUOp = 00
PCWrite
PCSource =0

Start

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource = 1

ALUSrcA =1
ALUSIcB = 00
ALUOp = 10

ALUSrcA =1
ALUSrcB = 10
ALUOp =00

RegDst = 1
RegWrite
MemtoReg = 0

MemWrite
lorD=1

MemRead
lorD =1

RegDst =0

RegWrite
MemtoReg = 1

FIGURE e4.5.12 The complete finite-state machine control for the datapath shown in Figure e4.5.4. The
labels on the arcs are conditions that are tested to determine which state is the next state; when the next state is
unconditional, no label is given. The labels inside the nodes indicate the output signals asserted during that state;
we always specify the setting of a multiplexor control signal if the correct operation requires it. Hence, in some
states a multiplexor control will be set to 0.
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Combinational
control logic

Datapath control outputs

Outputs < ——
Inputs
R ~
. A
Inputs from instruction ‘ o oo ‘
register opcode field t

Next state

FIGURE e4.5.13 Finite-state machine controllers are typically implemented using a block of combinational
logic and a register to hold the current state. The outputs of the combinational logic are the next-state number
and the control signals to be asserted for the current state. The inputs to the combinational logic are the current
state and any inputs used to determine the next state. In this case, the inputs are the instruction register opcode
bits. Notice that in the finite-state machine used in this chapter, the outputs depend only on the current state, not
on the inputs. The elaboration below explains this in more detail..
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module RISCVCPU (clock);

// Instruction opcodes

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, NOP =
32'h0000_0013, ALUop = 7'b001_0011;

input clock;

reg [31:0] PC, Regs[0:31]1, IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;
reg [31:0] [Memory[0:1023], OMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrsl, IFIDrs2, MEMWBrd; // Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop: // Access opcodes
wire [31:0] Ain, Bin; // the ALU inputs

// These assignments define fields from the pipeline registers
assign IFIDrsl = IFIDIR[19:151; // rsl field

assign IFIDrs2 IFIDIR[24:20]; // rs2 field

assign IDEXop IDEXIR[6:0]; // the opcode

assign EXMEMop EXMEMIR[6:07; // the opcode

assign MEMWBop MEMWBIR[6:01; // the opcode

assign MEMWBrd MEMWBIR[11:71; // rd field

// Inputs to the ALU come directly from the ID/EX pipeline registers
assign Ain = IDEXA;

assign Bin = IDEXB;

LI L T

integer i; // used to initialize registers
initial
begin
PC =0
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs
in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so
they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 21];
PC <= PC + 4;

// second instruction in pipeline is fetching registers

IDEXA <= Regs[IFIDrsl]; IDEXB <= Regs[IFIDrs2]; // get two registers

IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this
affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LW)
EXMEMALUOut <= IDEXA + ((53(IDEXIR[311)}, IDEXIR[30:201};
else if (IDEXop == SW)
EXMEMALUOut <= IDEXA + ((53{IDEXIR[311)}, IDEXIR [30:25],
IDEXIR[11:71%;
else if (IDEXop == AlLUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUQut <= Ain + Bin; // add operation
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default: ; // other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline

if (EXMEMop == AlLUop) MEMWBValue <= EXMEMALUOut; // pass along ALU
result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUQut >> 2];

else if (EXMEMop == SW) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store

MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LW) || (MEMWBop == AlLUop)) && (MEMWBrd != 0)) //
update registers if Toad/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;
end
endmodule

FIGURE e4.14.1 A Verilog behavioral model for the RISC-V five-stage pipeline, ignoring branch and data
hazards. As in the design earlier in Chapter 4, we use separate instruction and data memories, which would be
implemented using separate caches as we describe in Chapter 5.
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module RISCVCPU (clock);

// Instruction opcodes

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, NOP =
32'h0000_0013, ALUop = 7'b001_0011;

input clock;

reg [31:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue:
reg [31:0) IMemory[0:1023], DMemory[0:1023), // separale memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrsl, IFIDrs2, IDEXrsl, IDEXrs2, CXMEMrd, MEMWBrd; //
Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [31:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,
bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromlLDinkB;

IFIDIR(19:15];
IFIDIRC24:201:
IDEXTRL6:01;
IDEXIR[19:15];
IDEXIR[24:207;
EXMEMIR[6:01];
EXMEMIR[11:77;
MEMWBIR[6:01;
MEMWBIR[11:7];

assign IFIDrsl
assign IFIDrs2
assign IDEXop
assign IDEXrsl
assign IDEXrs2
assign EXMEMap
assign EXMEMrd
assign MEMWBop
assign MEMWBrd

L T Y T 1 I

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrsl == EXMEMrd) && (IDEXrsl != 0) &&
(EXMEMop == ALUop);

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&
(EXMEMop == ALUop);

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB = (IDEXrsl == MEMWBrd) && (IDEXrsl != 0) &&
(MEMWBop == AlUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&
(MEMWBop == AlLUop);

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromlDinWB = (IDEXrsl == MEMBrd) && (IDEXrsl != 0) &&
(MEMWBop == LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromlLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&
(MFMWBop == LW);

// The A input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register

assign Ain = bypassAfromMEM ? EXMEMALUOUt :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :

IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register
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assign Bin = bypassBfromMEM ? EXMEMALUQut :
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:
IDEXB;

integer i; // used to initialize registers
inftial
begin
PC =10
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs
in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i]l = i; // initialize registers--just so
they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers

IDEXA <= Regs[IFIDrsl1]; IDEXB <= Regs[IFIDrs2]; // get two registers

IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this
affects next stage only!

// third instruction is doing address calculation or ALU operation
if (IDEXop == LW)
EXMEMALUQuUt <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:201};
else if (IDEXop == SW)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]1}}, IDEXIR[30:257,
IDEXTR[11:714;
else if (IDEXop == AlLUop)
case (IDEXIR[31:25]) // case for the various R-type instructions
0: EXMEMALUOut <= Ain + Bin; // add operation
default: ; // other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B register

// Mem stage of pipeline

if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU
result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut >> 21;

else if (EXMEMop == SW) DMemory[ EXMEMALUOut >> 2] <= EXMEMB; //store

MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LW) || (MEMWBop == ALUop)) && (MEMWBrd != 0)) //
update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;
end
endmodule

FIGURE e4.14.2 A behavioral definition of the five-stage RISC-V pipeline with bypassing to ALU operations
and address calculations. The code added to Figure e4.14.1 to handle bypassing is highlighted. Because these
bypasses only require changing where the ALU inputs come from, the only changes required are in the
combinational logic responsible for selecting the ALU inputs. (Continues on next page)
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module RISCVCPU (clock);

// Instruction opcodes

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, NOP =
32'h0000_0013, ALUop = 7'b001_0011;

input clock;

reg [31:0] PC, Regs[0:31], IDEXA, IDEXB, EXMEMB, EXMEMALUQut,
MEMWBValue;
reg [31:0] IMemory[0:1023]1, DMemory[0:10231, // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrsl, IFIDrs2, IDEXrsl, IDEXrs2, EXMEMrd, MEMWBrd; //
Access register fields
wire [6:0] IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [31:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,
bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;
wire stall; // stall signal

assign IFIDrsl
assign IFIDrs2
assign IDEXop

assign IDEXrsl
assign IDEXrs2
assign EXMEMop
assign EXMEMrd
assign MEMWBop
assign MEMWBrd

IFIDIR[19:15];
IFIDIR[24:207;
IDEXIR[6:01;
IDEXIR[19:151;
IDEXIR[24:207;
EXMEMIR[6:01;
EXMEMIR[11:7];
MEMWBIRL6:071;
MEMWBIR[11:71;

LI TR T

]

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrsl == EXMEMrd) && (IDEXrsl != 0) &&
(EXMEMop == AlUop);

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&
(EXMEMop == AlUop);

// The bypass to input A from the WB stage for an ALU operation

assign bypassAfromALUinWB = (IDEXrsl == MEMWBrd) && (IDEXrsl != 0) &R&
(MEMWBop == AlUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&
(MEMWBop == AlLUop):

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLDinWB = (IDEXrsl == MEMWBrd) && (IDEXrsl != 0) &&
(MEMWBop == LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromLDinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&
(MEMWBoOp == LW);

// The A input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register

assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :

IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register

assign Bin = bypassBfromMEM ? EXMEMALUOut :

(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:

IDEXB;
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// The signal for detecting a stall based on the use of a result from

LW
assign stall = (MEMWBop == LW) && ( // source instruction is a load
(((IDEXop == LW) || (IDEXop == SW)) && (IDEXrsl ==
MEMWBrd)) || // stall for address calc

((1DEXop == ALUop) && ((IDEXrsl == MEMWBrd) |
(IDEXrs2 == MEMWBrd)))): // ALU use

integer i; // used to initialize registers
initial
begin
PCi= ()
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs
in pipeline registers
for (i=0;i<=31:i=i+1) Regslil = i; // initialize registers-just so
they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
if (~stall)
begin // the first three pipeline stages stall if there is a load
hazard
// first instruction in the pipeline is being fetched
// Fetch & increment PC
IFIDIR <= IMemory[PC >> 2];
PC <= PC + 4;

// second instruction in pipeline is fetching registers

IDEXA <= Regs[IFIDrsl]; IDEXB <= Regs[IFIDrs21: // get two
registers

IDEXIR <= TIFIDIR; // pass along IR-can happen anywhere, since this
affects next stage only!

// third instruction is deing address calculation or ALU operation
if (IDEXop == LW)
EXMEMALUQut <= IDEXA + {{53{IDEXIRL31]}}, IDEXIR[30:20]1};
else if (IDEXop == SW)
CXMCMALUOut <= IDCXA + {{53(IDCXIR[311}}, IEXIR[30:25],
IDEXIR[11:71};
else if (IDEXop == ALUop)
case (IDEXIRL31:251) // case for Lhe various R Llype inslruclions
0: EXMEMALUOut <= Ain + Bin; // add operation
default: ; // other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B
register
ena
else FXMEMTIR <= NOP; // Freeze first three stages of pipeline; inject
a nop into the EX output

// Mem stage of pipeline
if (EXMEMop == AlLUop) MEMWBValue <= EXMEMALUQut: // pass along ALU

result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut >> 21;
else if (EXMEMop == SW) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //stcre

MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LW) || (MEMWBop == AlUop)) && (MEMWBrd != 0)) //
update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBYalue;
end
endmodule

FIGURE e4.14.3 A behavioral definition of the five-stage RISC-V pipeline with stalls for loads when the
destination is an ALU instruction or effective address calculation.
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module RISCVCPU (clock);

// Instruction opcodes

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, NOP =
32'h0000_0013, ALUop = 7'b001_0011;

input clock;

reg [31:01 PC, Regs[0:31]1, IDEXA, IDEXB, EXMEMB, EXMEMALUOut,
MEMWBValue;
reg [31:0] IMemory[0:1023], DMemory[0:1023], // separate memories
IFIDIR, IDEXIR, EXMEMIR, MEMWBIR; // pipeline registers
wire [4:0] IFIDrsl, IFIDrs2, IDEXrsl, IDEXrs2, EXMEMrd, MEMWBrd; //
Access register fields
wire [6:0] IFIDop, IDEXop, EXMEMop, MEMWBop; // Access opcodes
wire [31:0] Ain, Bin; // the ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB,
bypassBfromMEM, bypassBfromALUinWB,
bypassAfromLDinWB, bypassBfromLDinWB;
wire stall; // stall signal
wire takebranch;
assign IFIDop IFIDIRL6:0];
assign IFIDrsl IFIDIR[19:157;
assign IFIDrs2 IFIDIR[24:20];
assign IDEXop = IDEXIR[6:0];
assign IDEXrsl = IDEXIR[19:15];
assign IDEXrs2 IDEXIR[24:20];
assign EXMEMop EXMEMIR[6:01;
assign EXMEMrd EXMEMIR[11:71;
assign MEMWBop MEMWBIR[6:07;
assign MEMWBrd MEMWBIR[11:77;

I

// The bypass to input A from the MEM stage for an ALU operation

assign bypassAfromMEM = (IDEXrsl == EXMEMrd) && (IDEXrsl != 0) &&
(EXMEMop == AlLUop);

// The bypass to input B from the MEM stage for an ALU operation

assign bypassBfromMEM = (IDEXrs2 == EXMEMrd) && (IDEXrs2 != 0) &&
(EXMEMop == ALUop);

// The bypass to input A from the WB stage for an ALU operation

assign bypas sAfromALUinWB = (IDEXrsl == MEMWBrd) && (IDEXrsl !I= 0) &&
(MEMWBop == AlLUop);

// The bypass to input B from the WB stage for an ALU operation

assign bypassBfromALUinWB = (IDEXrs2 == MEMWBrd) && (IDEXrs2 != 0) &&
(MEMWBop == ALUop);

// The bypass to input A from the WB stage for an LW operation

assign bypassAfromLDinWB = (IDEXrsl == MEMWBrd) && (IDEXrsl != 0) &&
(MEMWBop == LW);

// The bypass to input B from the WB stage for an LW operation

assign bypassBfromlLDinWB = (IDEXrs2 == MEMWBrd) && (IDEX rs2 != 0) &&
(MEMWBop == LW);

// The A input to the ALU is bypassed from MEM if there is a bypass
there,

// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register

assign Ain = bypassAfromMEM ? EXMEMALUOut :

(bypassAfromALUinWB || bypassAfromLDinWB) ? MEMWBValue :

IDEXA;

// The B input to the ALU is bypassed from MEM if there is a bypass
there,
// Otherwise from WB if there is a bypass there, and otherwise comes
from the IDEX register
assign Bin = bypassBfromMEM ? EXMEMALUQut :
(bypassBfromALUinWB || bypassBfromLDinWB) ? MEMWBValue:
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IDEXB;
// The signal for detecting a stall based on the use of a result from
LW
assign stall = (MEMWBop == LW) && ( // source instruction is a load
(((IDEXop == LW) || (IDEXop == SW)) && (IDEXrsl ==
MEMWBrd)) || // stall for address calc
((IDEXop == ALUop) && ((IDEXrsl == MEMWBrd) ||
(IDEXrs2 == MEMWBrd)))); // ALU use
// Signal for a taken branch: instruction is BEQ and registers are
equal
assign takebranch = (IFIDop == BEQ) &% (Regs[IFIDrsl] ==
Regs[IFIDrs2]);

integer i; // used to initialize registers
initial
begin
PC = 0;
IFIDIR = NOP; IDEXIR = NOP; EXMEMIR = NOP; MEMWBIR = NOP; // put NOPs
in pipeline registers
for (i=0;i<=31;i=i+1) Regs[i] = i; // initialize registers--just so
they aren't cares
end

// Remember that ALL these actions happen every pipe stage and with the
use of <= they happen in parallel!
always @(posedge clock)
begin
if (~stall)
begin // the first three pipeline stages stall if there is a load
hazard
if (~takebranch)
begin // first instruction in the pipeline is being fetched
normally
IFIDIR <= IMemory[PC >> 21;
PC <= PC + 4;
end
else
begin // a taken branch is in ID; instruction in IF is wrong;
insert a NOP and reset the PC
IFIDIR <= NOP;
PC <= PC + {(52{IFIDIR[31]1}}, IFIDIRC7], IFIDIR[30:257,
IFIDIR[11:8]1, 1'b0};
end

// second instruction in pipeline is fetching registers

IDEXA <= Regs[IFIDrsl]; IDEXB <= Regs[IFIDrs2]; // get two
registers

IDEXIR <= IFIDIR; // pass along IR--can happen anywhere, since this
affects next stage only!

// third instruction is doing addre ss calculation or ALU operation
if (IDEXop == LW)

EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]1}}, IDEXIR[30:201};
else if (IDEXop == SW)
EXMEMALUOut <= IDEXA + {{53{IDEXIR[31]}}, IDEXIR[30:25],
IDEXIR[11:71};
else if (IDEXop == AlLUop)
case (IDEXIR[31:251) // case for the various R-type instructions
0: EXMEMALUQut <= Ain + Bin; // add operation
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default: ; // other R-type operations: subtract, SLT, etc.
endcase
EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; // pass along the IR & B
register
end
else EXMEMIR <= NOP; // Freeze first three stages of pipeline; inject
a nop into the EX output

// Mem stage of pipeline

if (EXMEMop == ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU
result

else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut >> 21];

else if (EXMEMop == SW) DMemory[EXMEMALUOut >> 2] <= EXMEMB; //store

MEMWBIR <= EXMEMIR; // pass along IR

// WB stage
if (((MEMWBop == LW) || (MEMWBop == ALUop)) && (MEM WBrd != 0)) //
update registers if load/ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue;
end
endmodule

FIGURE e4.14.4 A behavioral definition of the five-stage RISC-V pipeline with stalls for loads when the
destination is an ALU instruction or effective address calculation.
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module RISCVCPU (clock);

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, AlLUop
= 7'b001_0011;

input clock; //the clock is an external input

// The architecturally visible registers and scratch registers for
implementation

reg [31:0] PC, Regs[0:311, ALUOut, MDR, A, B;

reg [31:0] Memory [0:1023], IR;

reg [2:0] state; // processor state

wire [6:0] opcode; // use to get opcode easily

wire [31:0] ImmGen; // used to generate immediate

IR[6:0]; // opcode is Tower 7 bits
(opcode == LW) ? {(53{IR[31]1}}, IR[30:207}

/* (opcode == SW) */{{53(IR[31]1}}, IR[30:25], IR[11:71};
assign PCOffset = {(52(IR[31]}}, IRC7]1, IR[30:25], IR[11:8], 1'bO};

assign opcode
assign ImmGen

// set the PC to 0 and start the control in state 1
initial begin PC = 0; state = 1; end

// The state machine--triggered on a rising clock
always @(posedge clock)
begin
Regs[0] <= 0; // shortcut way to make sure RO is always 0O
case (state) //action depends on the state
1: begin // first step: fetch the instruction, increment PC, go to
next state
IR <= Memory[PC >> 2];
PC <= PC + 4;
state <= 2; // next state
end
2: begin // second step: Instruction decode, register fetch, also
compute branch address
A <= Regs[IR[19:1511;
B <= Regs[IR[24:20]11;
ALUOut <= PC + PCOffset; // compute PC-relative branch target
state <= 3;
end
3: begin // third step: Load-store execution, ALU execution, Branch
completion
if ((opcode == LW) || (opcode == SW))
begin
ALUOut <= A + ImmGen; // compute effective address
state <= 4;
end
else if (opcode == AlLUop)
begin
case (IR[31:25]) // case for the various R-type instructions
0: ALUQut <= A + B; // add operation
default: ; // other R-type operations: subtract, SLT, etc.
endcase
state <= 4;
end
else if (opcode == BEQ)
begin
if (A == B) begin
PC <= ALUOut; // branch taken--update PC

end
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state <= 1;
end
else ; // other opcodes or exception for undefined instruction
would go here
end
4: begin
if (opcode == AlLUop)
begin // ALU Operation
Regs[IR[11:7]1] <= ALUOut; // write the result

state <= 1;
end // R-type finishes
else if (opcode == LW)

begin // load instruction
MDR <= Memory[ALUQut >> 21; // read the memory
state <= 5; // next state
end
else if (opcode == SW)
begin // store instruction
Memory[ALUQut >> 2] <= B; // write the memory
state <= 1; // return to state 1
end
else ; // other instructions go here
end
5: begin // LW is the only instruction still in execution
Regs[IR[11:71] <= MDR; // write the MDR to the register

state <= 1;
end // complete an LW instruction
endcase
end
endmodule

FIGURE e4.14.5 A behavioral specification of the multicycle RISC-V design.
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module Datapath (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite,
IRWrite,
PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource,

opcode, clock); // the control inputs + clock

parameter LW = 7'b000_0011, SW = 7'b010_0011;

input [1:0] ALUOp, ALUSrcB; // 2-bit control signals

input MemtoReg, MemRead, Memlrite, lorD, RegWrite, IRWrite, PCWrite,
PCWriteCond,

ALUSrcA, PCSource, clock; // 1-bit control signals

output [6:0] opcode; // opcode is needed as an output by control

reg [31:0] PC, MDR, ALUQut; // CPU state + some temporaries

reg [31:0] Memory[0:1023]1, IR; // CPU state + some temporaries

wire [31:0]1 A, B, SignExtendOffset, PCOffset, ALUResultQut, PCValue,
JumpAddr, Writedata, ALUAiIN,

ALUBin, MemOut; // these are signals derived from registers
wire [3:0] ALUCt1; // the ALU control lines
wire Zero; // the Zero out signal from the ALU

initial PC = 0; //start the PC at 0
//Combinational signals used in the datapath
// Read using word address with either ALUOut or PC as the address
source

assign MemQut = MemRead ? Memory[(TorD ? ALUOut : PC) >> 2] : 0;
assign opcode = IR[6:0]; // opcode shortcut
// Get the write register data either from the ALUOut or from the MDR
assign Writedata = MemtoReg ? MDR : ALUQut;
/! Generate immediate
assign ImmGen = (opcode == LW) ? {{53{IR[311}}, IR[30:20]} :

/* (opcode == SW) */{{53{IR[311}}, IR[30:25], IR[11:7]};
/! Generate pc offset for branches
assign PCOffset = {(52(IR[31]}}, IR[71, IR[30:25], IR[11:8], 1'b0};
// The A input to the ALU is either the rs register or the PC
assign ALUAiIn = ALUSrcA ? A : PC; // ALU input is PC or A

// Creates an instance of the ALU control unit (see the module defined

in Figure B.5.16

// Input ALUOp is control-unit set and used to describe the
instruction class as in Chapter 4

// Input IR[31:25] is the function code field for an ALU instruction

// Output ALUCL1 are the actual ALU control bits as in Chapter 4

ALUControl alucontroller (ALUOp, IRL31:251, ALUCt1); // ALU control
unit

/! Creates a 2-Lo-1 multiplexor used to select the source of the next
PC
// Inputs are ALUResultOut (the incremented PC), ALUOut (the branch
address)
// PCSource is the selector input and PCValue is the multiplexor
output
Mult2tol PCdatasrc (ALUResultOut, ALUOut, PCSource, PCValue):

// Creates a 4-to-1 multiplexor used to select the B input of the ALU
// Inputs are register B, constant 4, generated immediate, PC offset
// ALUSrcB is the select or input
// ALUBin is the multiplexor output
Multdtol ALUBinput (B, 32'd4, ImmGen, PCOffset, ALUSrcB, ALUBin);

// Creates a RISC-V ALU

// Inputs are ALUCt1 (the ALU control), ALU value inputs (ALUAin,
ALUBin)

// OQutputs are ALUResultQut (the 32-bit output) and Zero (zero
detection output)

RISCVALU ALU (ALUCt1, ALUAin, ALUBin, ALUResultOut, Zero); // the ALU
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// Creates a RISC-V register file

// Inputs are the rsl and rs2 fields of the IR used to specify which
registers to read,

// Writereg (the write register number), Writedata (the data to be
written),

// RegWrite (indicates a write), the clock

// Outputs are A and B, the registers read

registerfile regs (IR[19:15], IR[24:20], IR[11:7], Writedata,
RegWrite, A, B, clock); // Register file

// The clock-triggered actions of the datapath
always @(posedge clock)
begin
if (MemWrite) Memory[ALUOut >> 2] <= B; // Write memory--must be a
store
ALUOut <= ALUResultQut; // Save the ALU result for use on a later
clock cycle
if (IRWrite) IR <= MemQut; // Write the IR if an instruction fetch
MDR <= MemOut; // Always save the memory read value
// The PC is written both conditionally (controlled by PCWrite) and
unconditionally

end
endmodule

FIGURE e4.14.6 A Verilog version of the multicycle RISC-V datapath that is appropriate for synthesis.
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module RISCVCPU (clock);

parameter LW = 7'b000_0011, SW = 7'b010_0011, BEQ = 7'b110_0011, ALUop
= 7'b001_0011;

input clock;

reg [2:0] state;

wire [1:0] ALUOp, ALUSrcB;

wire [6:0] opcode;

wire MemtoReg, MemRead, MemWrite, IorD, RegWrite, IRWrite,
PCWrite, PCWriteCond, ALUSrcA, PCSource, MemoryOp;

// Create an instance of the RISC-V datapath, the inputs are the
control signals; opcode is only output
Datapath RISCVDP (ALUOp, MemtoReg, MemRead, MemWrite, IorD, RegWrite,
IRWrite,
PCWrite, PCWriteCond, ALUSrcA, ALUSrcB, PCSource,
opcode, clock);

initial begin state = 1; end // start the state machine in state 1

// These are the definitions of the control signals

assign MemoryOp = (opcode == LW) || (opcode == SW); // a memory
operation

assign ALUOp = ((state == 1) || (state == 2) || ((state == 3) &&
MemoryOp)) ? 2'b00 : // add

((state == 3) && (opcode == BEQ)) ? 2'b01 : 2'bl0; //

subtract or use function code

assign MemtoReg = ((state == 4) && (opcode == AlLUop)) ? 0 : 1;

assign MemRead = (state == 1) || ((state == 4) && (opcode == LW));

assign MemWrite = (state == 4) && (opcode == SW);

assign IorD = (state ==1) 2 0 : 1;

assign RegWrite = (state == 5) || ((state == 4) && (opcode == ALUop);

assign IRWrite = (state == 1);

assign PCWrite = (state == 1);

assign PCWriteCond = (state == 3) && (opcode == BEQ);
assign ALUSrcA = ((state == 1) || (state ==2)) 2 0 : 1;
assign ALUSrcB = ((state == 1) || ((state == 3) && (opcode == BEQ)))?
2'b01
(state = 2) 2 2"bll

((state == 3) && MemoFyOp) ? 2'b10 : 2'b00; // memory
operation or other
assign PCSource = (state == 1) 2 0 : 1;

// Here is the state machine, which only has to sequence states
always @(posedge clock)
begin // all state updates on a positive clock edge
case (state)
1: state <= 2; // unconditional next state
2: state <= 3; // unconditional next state
3: state <= (opcode == BEQ) ? 1 : 4; // branch go back else next

state
4: state <= (opcode == LW) ? 5 : 1; // R-type and LW finish
5: state <= 1; // go back
endcase
end
endmodule

FIGURE e4.14.7 The RISC-V CPU using the datapath from Figure e4.14.6.
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FIGURE e4.14.8 Single-cycle pipeline diagrams for clock cycles 1 (top diagram) and 2 (bottom diagram). This style of pipeline
representation is a snapshot of every instruction executing during one clock cycle. Our example has but two instructions, so at most two
stages are identified in each clock cycle; normally, all five stages are occupied. The highlighted portions of the datapath are active in that
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FIGURE e4.14.9 Single-cycle pipeline diagrams for clock cycles 3 (top diagram) and 4 (bottom diagram). In
the third clock cycle in the top diagram, Iw enters the EX stage. At the same time, sub enters ID. In the fourth clock
cycle (bottom datapath), Iw moves into MEM stage, reading memory using the address found in EX/MEM at the
beginning of clock cycle 4. At the same time, the ALU subtracts and then places the difference into EX/MEM at the
end of the clock cycle.
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FIGURE e4.14.12 Clock cycles 3 and 4. In the top diagram, Iw enters the EX stage in the third clock cycle, adding x1 and 40 to
form the address in the EX/MEM pipeline register. (The Iw instruction is written lw x10, ... upon reaching EX, because the identity of
instruction operands is not needed by EX or the subsequent stages. In this version of the pipeline, the actions of EX, MEM, and WB
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FIGURE e4.14.13 Clock cycles 5 and 6. With add, the final instruction in this example, entering IF in the top datapath, all
instructions are engaged. By writing the data in MEM/WB into register 10, lw completes; both the data and the register number are
in MEM/WB. In the same clock cycle, sub sends the difference in EXMEM to MEM/WB, and the rest of the instructions move
forward. In the next clock cycle, sub selects the value in MEM/WB to write to register number 11, again found in MEM/WB. The
remaining instructions play follow-the-leader: the ALU calculates the OR of x6 and x7 for the or instruction in the EX stage, and
registers x8 and x9 are read in the ID stage for the add instruction. The instructions after add are shown as inactive just to
emphasize what occurs for the five instructions in the example. The phrase “after <i>" means the ith instruction after add.
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FIGURE e4.14.14 Clock cycles 7 and 8. In the top datapath, the add instruction brings up the rear, adding the values
corresponding to registers x8 and x9 during the EX stage. The result of the or instruction is passed from EX/MEM to MEM/WB in the
MEM stage, and the WB stage writes the result of the and instruction in MEM/WB to register x12. Note that the control signals are
deasserted (set to 0) in the ID stage, since no instruction is being executed. In the following clock cycle (lower drawing), the WB
stage writes the result to register x13, thereby completing or, and the MEM stage passes the sum from the add in EX/MEM to
MEM/WB. The instructions after add are shown as inactive for pedagogical reasons.
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instruction sequence. The instructions after add are shown as inactive for pedagogical reasons.
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or x4, x4, x2 :nH x4, x2, x5 I“JU x2, x1. x3 : before<1> } before<2>
| | | |
| ID/EX | |
| \ io, T 10 | |
: AR ”' e EXMEM ‘[
/ \ [
| Cmmm} M lwe .
I \ ) | L
| \ / = L
IF/ID & =
2 x2 x1
c > _>|
o
T
2
Instruction E Realll
PC™ “memory ™| [ x5 | [x3
| |
2 1
5 3
4 2 S——
= Ve <l r
1 1 1 I
1 1 1 s
1 1 t T
1 1 1 I
] 1 T ]
1
Clock 3 i | I |
1 1 1 I
1 1 1 I
add x9, x4, x2 :tr X x4, x2 :J d x4, x2, x :aUJ X2 s { before<1>
| | | |
! ID/EX | |
| 1o B30 | |
| / W8 EX/MEM |
I \ — i) [
| Control M wa \
| \ } | i
| \ / A
IF/ID h 4 M B
4 x4
c —
o
S
S :
= . >
Instruction £ Reo S A >
PO “memory ™ [ I x2 x5
>
M
u
X
4 >
2 5
4 4 2
T B ((rormasis ‘T—I
1 i unit IS
i )
1 i - S
1 1
1 1l
1 1
1 1
1 1

Clock 4

SU Pl .

FIGURE e4.14.16 Clock cycles 3 and 4 of the instruction sequence on page 366.e26. The bold lines are those active in a cloc
cycle, and the italicized register numbers in color indicate a hazard. The forwarding unit is highlighted by shading it when it is
forwarding data to the ALU. The instructions before sub are shown as inactive just to emphasize what occurs for the four instructio
in the example. Operand names are used in EX for control of forwarding; thus they are included in the instruction label for EX.
Operand names are not needed in MEM or WB, so ... is used. Compare this with Figures e4.14.12 through e4.14.15, which show
the datapath without forwarding where ID is the last stage to need operand information.
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after<1> add x9, x4, x2 tor x4, x4, x2 tand x4, ... Psub x2, ..
| ! | ]
1 1
1 ID/EX !
| 10 10 i i
i = EX/MEM |
| : I el :
} Control L M i LTEM/WB
! | - — -
1
IF/ID > EX |—> A WBl—
i L ] Jiiss]
4 x4
c
S
3l [2
s
= E 2 Registers - y
4
2
9 4 2
i —— L ]
| Forwarding i
1 unit H H
| f f
| f |
Clock 5 ' T T
“ !
after<2> after<1> tadd x9, x4, x2 for x4, ... tand x4, ..
] i
] i |
ID/EX | !
[ ] 10 ! 3
=y EX/MEM 1
M 10 !
! Control M wB MEM/WB
| —— — —_
]
IF}ID EX M WB—
- — — L
c
S
B
E
E

-

> u

X

1 Registers 1
- M

s> u

>l

4
y s —
Forwarding [<— |

unit

Clock 6

FIGURE e4.14.17 Clock cycles 5 and 6 of the instruction sequence on page 366.e26. The forwarding unit is highlighted when
is forwarding data to the ALU. The two instructions after add are shown as inactive just to emphasize what occurs for the four
instructions in the example. The bold lines are those active in a clock cycle, and the italicized register numbers in color indicate a
hazard.
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and x4, x2, x5, 7w x2, 40(x1) , before<1> | before<2> before<3>
| ~ | 1
1 -»l :
i 1§ i IDIEX
i 1 [ i
‘: w8 EXIMEM
! M -
! s 3 ¥ MEMWB
! .
i
IF/ID EX
= 1S =
1 x1
—
<
S
S
@ Registers.
2
PC Instruction = ALU
memory
1
X
2
o .
i i
|
i i
| |
i i I
Clock 2 | ; ;
| | i
or x4, x4, x2 1 and x4, x2, 0(x1 ! before<1> before<2>
| Hazard i
T > detection !
H t unit |
15 i
i i
| i
! Ex:msm
I ~
|
; §o MEMAWB
! 1] :
IF1D M }7
A L
2 x2 xi
|  E—
g
2
% Registers
pC Instruction =
memory X5
>
@»
2 1
5 X
4 2
T ID/EX.RegisterRd | ] T
| T
i |

Clock 3

FIGURE e4.14.18 Clock cycles 2 and 3 of the instruction sequence on page 366.e26 with a load replacing sub. The bold line
are those active in a clock cycle, the italicized register numbers in color indicate a hazard, and the ... in the place of operands
means that their identity is information not needed by that stage. The values of the significant control lines, registers, and register
numbers are labeled in the figures. The and instruction wants to read the value created by the Iw instruction in clock cycle 3, so the
hazard detection unit stalls the and and or instructions. Hence, the hazard detection unit is highlighted.
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or x4, x4, x2 ,and x4, x2, x5 \ Bubble v lw o x2, ... before<1>
| |
i |
= i i
= KEd i
| 1 00 :
| EX/MEM
— peduy
M 1
> u M WB
Jigs I'E =
IFID EX M WB
3 il = -
2 x2 X2
c
2 \
k]
H Registers
z egist
pely| Mstruction [ [ = | ; 'S pata ||
memory X5 X5 menie
| > M
7 u
| X
2 2
5 5
4 4 5
W 1 Forwarding :_'-v——] i
! T unit >a! ° r
1 7 1
: 1
i 1 i
Clock 4 I ;
i i
add x9, x4, x2ior x4, x4, x2 v and x4, x2, x5 | Bubble Plw o x2, ...
i i | |
| | i
T 4> ' | |
i 2f> IDIEX | i
} 10 1‘ :
- i
} EX'MEM ;
| " i
b Jpr— V
! 5 5 i MEMWB
' || == i o
1
IF}ID EX M - WB—
o ] ) L
4 x4 x2
§ 2 >
B Registers
PC Instruction - i 2 * . f—e mg:\‘:ry - "
memory x2 x5 u
M x
-| u
—| —
4 2
2 5
4 ) 2
o T Forwarding |<1— _‘._—I
! unit U .
: : ~\_ : .
i i | ]
i | | |
i i i
Clock 5 ! i
|
i

I I
1 1

FIGURE e4.14.19 Clock cycles 4 and 5 of the instruction sequence on page 366.e26 with a load replacing sub. The bubble is
inserted in the pipeline in clock cycle 4, and then the and instruction is allowed to proceed in clock cycle 5. The forwarding unit is
highlighted in clock cycle 5 because it is forwarding data from |lw to the ALU. Note that in clock cycle 4, the forwarding unit forwards
the address of the Iw as if it were the contents of register x2; this is rendered harmless by the insertion of the bubble. The bold lines
are those active in a clock cycle, and the italicized register numbers in color indicate a hazard.
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after<1> ,add x9, x4, x2 yor x4, x4, x2 and x4, ... . Bubble

4
2t

S
24—
R

| i
| i
EX:'MEM |
s |
10 ]

e EEM.’WB

M wB|

|
IFiD

?
IZI?I&AI
|

— —
4 x4
L, -
k-] 2
"
3 Registers
B uction (| 1] = | 3 -
d X2 X2
 —
[M]
u
| x
4 4
2 2
o | s 4
=T o F = =
} \’ or\vnfdlng T ;
Il | = unit - -
i i \ J<T T
i ! ! i
i i i
Clock 6 : T 1
i
i
after<2> 1 after<1> 1 add x9, x4, x2 or x4, ... ! and x4, ...
i |
i
|
ID/EX

|
|
1 " }
| EXIMEM i
| 15 )
| 10 ‘
0 i i i IrEM,ws
! o | |
1
EX M "A—';*

|
IF/ID

|:|> st ; : 4»‘ Registers ) _,@;"‘ | il oata | ‘ @
— “(u

Clock 7

II structior

FIGURE e4.14.20 Clock cycles 6 and 7 of the instruction sequence on page 366.e26 with a load replacing sub. Note that
unlike in Figure e4.14.17, the stall allows the Iw to complete, and so there is no forwarding from MEM/WB in clock cycle 6. Register
x4 for the add in the EX stage still depends on the result from or in EX/MEM, so the forwarding unit passes the result to the ALU.
The bold lines show ALU input lines active in a clock cycle, and the italicized register numbers indicate a hazard. The instructions
after add are shown as inactive for pedagogical reasons.
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FIGURE e4.17.1 The Stretch computer, one of the first pipelined computers.
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FIGURE e4.17.2 The CDC 6600, the first supercomputer.
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FIGURE e4.17.3 The IBM 360/91 pushed the state of the art in pipelined
execution when it was unveiled in 1966.
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RegWrite | AlUsrc | ALuoperation | MemMWrite | MemRead | MemToRe
0

[ true \ 0 | “and” | false | false l
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| 0x0000000000000014 | 0x0000000000000050 |
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 Awop | ALU Control Lines

| 00 [ 0010 |
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CPI 1.85 1..65 1:35 1.2
Period 120 120 1.20 130
Time 222n 198n 162n 156n
Speedup - 1.12 1.37 1.42
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BT+ | 2 [ 3 | 4 [ s | e [ 7 | 8 | |
IF ID EX ME WB

add

1d IF ID EX ME WB

1d IF ID EX ME WB

or IF ID EX ME WB

sd IF ID EX ME WB
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add
1d IF ID - - EX
1d IF - = D
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Always Taken Always not-taken

] 3/5 = 60% | 2/5 = 40% |
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Outcomes Predictor value at time Correct of Accuracy
of prediction Incorrect

[ NnTT | 01,01 | el | 5%
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Outcomes Predictor value at time Correct of Incorrect Accuracy
of prediction (in steady state)

T,NT, T, T, NT 1st occurrence: 0,1,0,1,2 Cil.C:C,l 60%
2nd occurrence: 1,2,1,2,3
3rd occurrence: 2,3,2,3,3
4th occurrence: 2,3,2,3,3
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| Invalid target address (EX) | Invalid data address (MEM) |
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