
FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds 1 to 0, resulting in the sum of this bit being 1 and the carry out 

from this bit being 0. Hence, the operation for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out 

of 1. The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is 1 + 0 + 0, yielding a 1 sum and no carry. 
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FIGURE 3.2 Overflow conditions for addition and subtraction. 
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FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register, ALU, and Product register are all 64 bits wide, 

with only the Multiplier register containing 32 bits. (Appendix A describes ALUs.) The 32-bit multiplicand starts in the right half of the 

Multiplicand register and is shifted left 1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm 

starts with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when to write new values 

into the Product register. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



FIGURE 3.4 The first multiplication algorithm, using the hardware shown in Figure 3.3. If the least significant bit of the multiplier is 1, add the 

multiplicand to the product. If not, go to the next step. Shift the multiplicand left and the multiplier right in the next two steps. These three steps are 

repeated 32 times. 
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FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version in Figure 3.3. The Multiplicand register and ALU 

have been reduced to 32 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The multiplier is placed instead in the 

right half of the Product register, which has grown by one bit to 65 bits to hold the carry-out of the adder. These changes are highlighted in color. 
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FIGURE 3.6 Multiply example using algorithm in Figure 3.4. The bit examined to determine the 

next step is circled in color. 
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FIGURE 3.7 Fast multiplication hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the 

loop” to use 31 adders and then organizes them to minimize delay. 
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FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder register are all 64 bits wide, with only the Quotient 

register being 32 bits. The 32-bit divisor starts in the left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with 

the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value into the Remainder register. 
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FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive, the divisor did go into the dividend, so step 2a 

generates a 1 in the quotient. A negative remainder after step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the 

quotient and adds the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the 

divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times. 
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FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to determine 

the next step is circled in color. 
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FIGURE 3.11 An improved version of the division hardware. The Divisor register, ALU, and Quotient register are all 32 bits wide. Compared to 

Figure 3.8, the ALU and Divisor registers are halved and the remainder is shifted left. This version also combines the Quotient register with the right 

half of the Remainder register. As in Figure 3.5, the Remainder register has grown to 65 bits to make sure the carry out 

of the adder is not lost. 
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FIGURE 3.12 RISC-V core architecture. RISC-V machine language is listed in the RISC-V Reference Data Card at the 

front of this book. 
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FIGURE 3.13 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the sign. Denormalized numbers are 

described in the Elaboration on page 233. This information is also found in Column 4 of the RISC-V Reference Data Card at the front of 

this book. 



FIGURE 3.14 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if 

rounding causes the sum to be unnormalized, we must repeat step 3. 
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FIGURE 3.15 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.14 correspond 

to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is 

larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the 

smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together 

using the big ALU. The normalization step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates 

the final result, which may require normalizing again to produce the actual final result. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Copyright © 2021 Elsevier Inc. All rights reserved. 

FIGURE 3.16 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if 

rounding causes the sum to be unnormalized, we must repeat step 3. 
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FIGURE 3.17 RISC-V floating-point architecture revealed thus far. This information is also found in column 2 of the RISC-V 

Reference Data Card at the front of this book. 
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FIGURE 3.18 The SSE/SSE2 floating-point instructions of the x86. xmm means one operand is a 128-bit SSE2 register, and {mem|xmm} 

means the other operand is either in memory or it is an SSE2 register. The table uses regular expressions to show the variations of instructions. 

Thus, MOV[AU]{SS|PS|SD|PD} represents the eight instructions MOVASS,MOVAPS,MOVASD,MOVAPD,MOVUSS,MOVUPS,MOVUSD, 

and MOVUPD. We use square brackets [] to show single-letter alternatives: A means the 128-bit operand is aligned in memory; U means the 

128-bit operand is unaligned in memory; H means move the high half of the 128-bit operand; and L means move the low half of the 128-bit 

operand. We use the curly brackets {} with a vertical bar | to show multiple letter variations of the basic operations: SS stands for Scalar Single 

precision floating point, or one 32-bit operand in a 128-bit register; PS stands for Packed Single precision floating point, or four 32-bit operands in 

a 128-bit register; SD stands for Scalar Double precision floating point, or one 64-bit operand in a 128-bit register; PD stands for Packed Double 

precision floating point, or two 64-bit operands in a 128-bit register. 
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FIGURE 3.19 Optimized version of DGEMM using C intrinsics to generate AVX512 subword-parallel instructions 

for the x86. Figure 3.20 shows the assembly language produced by the compiler for the inner loop. 
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FIGURE 3.20 The x86 assembly language for the body of the nested loops generated by compiling the optimized C code in 

Figure 3.19. Note the similarities to Figure 2.44 of Chapter 2, with the primary difference being that the original floating-point 

operations are now using ZMM registers and the pd versions of the instructions for parallel double precision instead of the 

sd version for scalar double precision, and it is performing a single multiply-add instruction instead of separate multiply 

and add instruction. 
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FIGURE 3.21 A sampling of newspaper and magazine articles from November 1994, including the New York Times, San Jose 

Mercury News, San Francisco Chronicle, and Infoworld. The Pentium floating-point divide bug even made the opening comedic 

monologue of the David Letterman Late Show on television. (“You know what goes great with those defective Pentium chips? Defective 

Pentium salsa!”) Intel eventually took a $500 million write-off to replace the buggy chips. 
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FIGURE 3.22 The frequency of the RISC-V instructions for the SPEC CPU2006 benchmarks. The 17 most popular instructions, which 

collectively account for 76% of all instructions executed, are included in the table. Pseudoinstructions are converted into RISC-V before 

execution, and hence do not appear here, explaining in part the popularity of addi. 
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FIGURE 3.23 Floating point format for IEEE 754 single-precision (fp32), IEEE 754 half-precision (fp16), and Brain float 16. 

Google’s TPUv3 hardware uses Brain float 16 (see Section 6.11). 
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