
Figure A.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from 

left to right. The signals to the left of each symbol are the inputs, while the output appears on the right. The 

AND and OR gates both have two inputs. Inverters have a single input. 
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Figure A.2.2 Logic gate implementation of A + B using explicit inverts on the left and 

bubbled inputs and outputs on the right. This logic function can be simplified to A B or in Verilog, 

A & ~ B. 
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Figure A.3.1 A 3-bit decoder has three inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the 

output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the 

decoder says that the input signal is 3 bits wide. 
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Figure A.3.2 A two-input multiplexor on the left and its implementation with gates on 

the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input 

(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when 

they are wider than two inputs. We show how to do this beginning on page A-23. 
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Figure A.3.3 The basic form of a PLA consists of an array of AND gates followed by an 

array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or 

inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms. 
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Figure A.3.4 The PLA for implementing the logic function described in the example. 
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Figure A.3.5 A PLA drawn using dots to indicate the components of the product terms 

and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the 

width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the 

input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding 

product term appears in the corresponding output. 
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Figure A.3.6 A multiplexor is arrayed 64 times to perform a selection between two 

64-bit inputs. Note that there is still only one data selection signal used for all 32 1-bit multiplexors. 
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Figure A.4.1 A Verilog module that defines a half-adder using continuous assignments. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Figure A.4.2 A Verilog definition of a 4-to-1 multiplexor with 32-bit inputs, using a case 

statement. The case statement acts like a C switch statement, except that in Verilog only the code 

associated with the selected case is executed (as if each case state had a break at the end) and there is no 

fall-through to the next statement. 
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Figure A.4.3 A Verilog behavioral definition of a RISC-V ALU. This could be synthesized using a module library containing 

basic arithmetic and logical operations. 
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Figure A.5.1 The 1-bit logical unit for AND and OR. 
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Figure A.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it 

has three inputs and two outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder. 
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Figure A.5.3 Input and output specification for a 1-bit adder. 
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Figure A.5.4 Values of the inputs when CarryOut is a 1. 
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Figure A.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic 

for the Sum output given in the equation on this page. 
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Figure A.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure A.5.5). 
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Figure A.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit 

is connected to the CarryIn of the more significant bit. This organization is called ripple carry. 
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Figure A.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By 

selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s complement 

subtraction of b from a instead of addition of b to a. 
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Figure A.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a 

and b. By selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b. 
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Figure A.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b, and (bottom) a 1-bit ALU for the 

most significant bit. The top drawing includes a direct input that is connected to perform the set on less than operation (see 

Figure A.5.11); the bottom has a direct output from the adder for the less than comparison called Set. (See Exercise A.24 at 

the end of this appendix to see how to calculate overflow with fewer inputs.) 
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Figure A.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of 

Figure A.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 0 

except for the least significant bit, which is connected to the Set output of the most significant bit. If the ALU 

performs a − b and we select the input 3 in the multiplexor in Figure A.5.10, then Result = 0 … 001 if a < b, 

and Result = 0 … 000 otherwise. 
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Figure A.5.12 The final 32-bit ALU. This adds a Zero detector to Figure A.5.11. 
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Figure A.5.13 The values of the three ALU control lines, Ainvert, Bnegate, and Operation, 

and the corresponding ALU operations. 
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Figure A.5.14 The symbol commonly used to represent an ALU, as shown in Figure 

A.5.12. This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.. 
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Figure A.5.15 A Verilog behavioral definition of a RISC-V ALU. 
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Figure A.5.16 The RISC-V ALU control: a simple piece of combinational control logic. 
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Figure A.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using 

water pipes and valves. The wrenches are turned to open and close valves. Water is shown in color. The 

output of the pipe (ci + 1) will be full if either the nearest generate value (gi) is turned on or if the i propagate 

value (pi) is on and there is water further upstream, either from an earlier generate or a propagate with water 

behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all 

propagates. 
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Figure A.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0. 

P0 is open only if all four propagates (pi) are open, while water flows in G0 only if at least one generate (gi) is 

open and all the propagates downstream from that generate are open. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Figure A.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the 

carries come from the carry-lookahead unit, not from the 4-bit ALUs. 
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Figure A.7.1 A clock signal oscillates between high and low values. The clock period is the 

time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and 

causes state to be changed. 
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Figure A.7.2 The inputs to a combinational logic block come from a state element, and 

the outputs are written into a state element. The clock edge determines when the contents of the 

state elements are updated. 
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Figure A.7.3 An edge-triggered methodology allows a state element to be read and 

written in the same clock cycle without creating a race that could lead to undetermined 

data values. Of course, the clock cycle must still be long enough so that the input values are stable when 

the active clock edge occurs. 
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Figure A.8.1 A pair of cross-coupled NOR gates can store an internal value. The value 

stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or 

Q is asserted, Q will be deasserted and vice versa. 
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Figure A.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other 

input is 0. Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is 

asserted, in which case the value of input D replaces the value of Q and is stored. The value of input D must 

be stable when the clock signal C changes from asserted to deasserted. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Figure A.8.3 Operation of a D latch, assuming the output is initially deasserted. When 

the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input. 
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Figure A.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open and 

follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is closed, but 

the second latch, called the slave, is open and gets its input from the output of the master latch. 
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Figure A.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output is 

initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores 

the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure A.8.3. In a 

clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when 

C transitions. 
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Figure A.8.6 Setup and hold time requirements for a D flip-flop with a falling-edge trigger. 

The input must be stable for a period of time before the clock edge, as well as after the clock edge. The 

minimum time the signal must be stable before the clock edge is called the setup time, while the minimum 

time the signal must be stable after the clock edge is called the hold time. Failure to meet these minimum 

requirements can result in a situation where the output of the flip-flop may not be predictable, as described 

in Section A.11. Hold times are usually either 0 or very small and thus not a cause of worry. 
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Figure A.8.7 A register file with two read ports and one write port has five inputs and 

two outputs. The control input Write is shown in color. 
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Figure A.8.8 The implementation of two read ports for a register file with n registers 

can be done with a pair of n-to-1 multiplexors, each 32 bits wide. The register read number 

signal is used as the multiplexor selector signal. Figure A.8.9 shows how the write port is implemented. 
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Figure A.8.9 The write port for a register file is implemented with a decoder that is used 

with the write signal to generate the C input to the registers. All three inputs (the register 

number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct 

data are written into the register file. 
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Figure A.8.10 A specification of a clock. 
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Figure A.8.11 A RISC-V register file written in behavioral Verilog. This register file writes on 

the rising clock edge. 
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Figure A.9.1 A 32K × 8 SRAM showing the 21 address lines (32K = 215) and 16 data 

inputs, the three control lines, and the 16 data outputs. 
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Figure A.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four 

Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance 

output that allows a three-state buffer whose Output enable is asserted to drive the shared output line. 
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Figure A.9.3 The basic structure of a 4 × 2 SRAM consists of a decoder that selects which pair of cells to activate. 

The activated cells use a three-state output connected to the vertical bit lines that supply the requested data. The address that 

selects the cell is sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip 

select signals have been omitted, but they could easily be added with a few AND gates. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Figure A.9.4 Typical organization of a 4M × 8 SRAM as an array of 4K × 1024 arrays. The first decoder generates the 

addresses for eight 4K × 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit-wide array. This is a 

much easier design than a single-level decode that would need either an enormous decoder or a gigantic multiplexor. In 

practice, a modern SRAM of this size would probably use an even larger number of blocks, each somewhat smaller. 
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Figure A.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell 

contents and a transistor used to access the cell. 
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Figure A.9.6 A 4M × 1 DRAM is built with a 2048 × 2048 array. The row access uses 11 bits to 

select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 

latches. The RAS and CAS signals control whether the address lines are sent to the row decoder or column 

multiplexor. 
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Figure A.10.1 A state machine consists of internal storage that contains the state and 

two combinational functions: the next-state function and the output function. Often, the 

output function is restricted to take only the current state as its input; this does not change the capability of 

a sequential machine, but does affect its internals. 
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Figure A.10.2 The graphical representation of the two-state traffic light controller. We 

simplified the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen 

in the next-state table is (NScar  EWcar) (NScar  EWcar), which is equivalent to EWcar. 
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Figure A.10.3 A finite-state machine is implemented with a state register that holds 

the current state and a combinational logic block to compute the next state and output 

functions. The latter two functions are often split apart and implemented with two separate blocks of logic, 

which may require fewer gates. 
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Figure A.10.4 A Verilog version of the traffic light controller. 

Copyright © 2021 Elsevier Inc. All rights reserved. 



Figure A.11.1 In an edge-triggered design, the clock must be long enough to allow 

signals to be valid for the required setup time before the next clock edge. The time for a 

flip-flop input to propagate to the flip-flip outputs is tprop; the signal then takes tcombinational to 

 travel through the combinational logic and must be valid tsetup before the next clock edge. 
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Figure A.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the difference 

in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the input to 

the second flipflop before the clock arrives at the second flip-flop. 
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Figure A.11.3 A two-phase clocking scheme showing the cycle of each clock and the 

nonoverlapping periods. 
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Figure A.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock 

phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational inputs has 

a stable input during ϕ2, and its output is latched by ϕ2. The second (rightmost) combinational block operates in just the 

opposite fashion, with stable inputs during ϕ1. Thus, the delays through the combinational blocks determine the minimum time 

that the respective clocks must be asserted. The size of the nonoverlapping period is determined by the maximum clock skew 

and the minimum delay of any logic block. 
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Figure A.11.5 A synchronizer built from a D flip-flop is used to sample an asynchronous 

signal to produce an output that is synchronous with the clock. This “synchronizer” will not 

work properly! 
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Figure A.11.6 This synchronizer will work correctly if the period of metastability that 

we wish to guard against is less than the clock period. Although the output of the first flip-flop 

may be metastable, it will not be seen by any other logic element until the second clock, when the second D 

flip-flop samples the signal, which by that time should no longer be in a metastable state. 
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Figure A.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. The 

details are shown on the left, with the individual signals in lowercase, and the corresponding higher-level 

blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can 

take n + 2 bits.. 
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