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	 D. 1	 Introduction

This appendix covers 10 instruction set architectures, some of which remain a vital 
part of the IT industry and some of which have retired to greener pastures. We 
keep them all in part to show the changes in fashion of instruction set architecture 
over time.

We start with eight RISC architectures, using RISC V as our basis for comparison. 
There are billions of dollars of computers shipped each year for ARM (including 
Thumb-2), MIPS (including microMIPS), Power, and SPARC. ARM dominates in 
both the PMD (including both smart phones and tablets) and the embedded markets.

The 80x86 remains the highest dollar-volume ISA, dominating the desktop 
and the much of the server market. The 80x86 did not get traction in either the 
embedded or PMD markets, and has started to lose ground in the server market. 
It has been extended more than any other ISA in this book, and there are no plans 
to stop it soon. Now that it has made the transition to 64-bit addressing, we expect 
this architecture to be around, although it may play a smaller role in the future then 
it did in the past 30 years.

The VAX typifies an ISA where the emphasis was on code size and offering a 
higher level machine language in the hopes of being a better match to programming 
languages. The architects clearly expected it to be implemented with large amounts 
of microcode, which made single chip and pipelined implementations more 
challenging. Its successor was the Alpha, a RISC architecture similar to MIPS and 
RISC V, but which had a short life.

The vulnerable IBM 360/370 remains a classic that set the standard for many 
instruction sets to follow. Among the decisions the architects made in the early 
1960s were:

■	 8-bit byte

■	 Byte addressing

■	 32-bit words

■	 32-bit single precision floating-point format + 64-bit double precision 
floating-point format

■	 32-bit general-purpose registers, separate 64-bit floating-point registers

■	 Binary compatibility across a family of computers with different cost-
performance

■	 Separation of architecture from implementation

The IBM 370 was extended to be virtualizable, so it had the lowest overhead for 
a virtual machine of any ISA. The IBM 360/370 remains the foundation of the IBM 
mainframe business in a version that has extended to 64 bits.
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	 D.2	
A Survey of RISC Architectures for 
Desktop, Server, and Embedded 
Computers

Introduction
We cover two groups of Reduced Instruction Set Computer (RISC) 
architectures in this section. The first group is the desktop, server RISCs, and 
PMD processors:

■	 Advanced RISC Machines ARMv8, AArch64, the 64-bit ISA,

■	 MIPS64, version 6, the most recent the 64-bit ISA,

■	� Power version 3.0, which merges the earlier IBM Power architecture and the 
PowerPC architecture.

■	 RISC-V, specifically RV64G, the 64-bit extension of RISC-V.

■	 SPARCv9, the 64-bit ISA.

As Figure D.1 shows these architectures are remarkably similar.
There are two other important historical RISC processors that are almost 

identical to those in the list above: the DEC Alpha processor, which was made 
by Digital Equipment Corporation from 1992 to 2004 and is almost identical to 
MIPS64. Hewlett-Packard’s PA-RISC was produced by HP from about 1986 to 
2005, when it was replaced by Itanium. PA-RISC is most closely related to the 
Power ISA, which emerged from the IBM Power design, itself a descendant of IBM 
801.

The second group is the embedded RISCs designed for lower-end applications:

■	 Advanced RISC Machines, Thumb-2: an 32-bit instruction set with 16-bit 
and 32-bit instructions. The architecture includes features from both ARMv7 
and ARMv8.

■	 microMIPS64: a version of the MIPS64 instruction set with 16-bit 
instructions, and

■	 RISC-V Compressed extension (RV64GC), a set of 16-bit instructions added 
to RV64G

Both RV64GC and microMIPS64 have corresponding 32-bit versions: RV32GC 
and microMIPS32.

Since the comparison of the base 32-bit or 64-bit desktop and server architecture 
will examine the differences among those ISAs, our discussion of the embedded 
architectures focuses on the 16-bit instructions. Figure D.2 shows that these 
embedded architectures are also similar. In all three, the 16-bit instructions are 
versions of 32-bit instructions, typically with a restricted set of registers.The idea 
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is to reduce the code size by replacing common 32-bit instructions with 16-bit 
versions. For RV32GC or Thumb-2, including the 16-bit instructions yields a 
reduction in code size to about 0.73 of the code size using only the 32-bit ISA 
(either RV32G or ARMv7).

A key difference among these three architectures is the structure of the base 32-
bit ISA. In the case of RV64GC, the 32-bit instructions are exactly those of RV64G. 
This is possible because RISC V planned for the 16-bit option from the beginning, 
and branch addresses and jump addresses are specified to 16-bit boundaries. In the 
case of microMIPS64, the base ISA is MIPS64, with one change: branch and jump 
offsets are interpreted as 16-bit rather than 32-bit aligned. (microMIPS also uses 
the encoding space that was reserved in MIPS64 for user-defined instruction set 
extensions; such extensions are not part of the base ISA.)

Thumb-2 uses a slightly different approach. The 32-bit instructions in Thumb2 
are mostly a subset of those in ARMv7; certain features that were dropped in ARMv8 
are not included (e.g., conditional execution of most instructions and the ability to 
write the PC as a GPR). Thumb-2 also includes a few dozen instructions introduced 

FIGURE D.1  Summary of the most recent version of five architectures for desktop, server, and PMD use (all had 
earlier versions). Except for the number of data address modes and some instruction set details, the integer instruction sets of these 
architectures are very similar. Contrast this with Figure D.29. In ARMv8, register 31 is a 0 (like register 0 in the other architectures), but 
when it is used in a load or store, it is the current stack pointer, a special purpose register. We can either think of SP-based addressing 
as a different mode (which is how the assembly mnemonics operate) or as simply a register + offset addressing mode (which is how 
the instruction is encoded).

ARMv8 MIPS64R6 Powerv3.0 RV64G SPARCv9

Original date (base ISA) 1986 1986 1990 2016 1987

Date of this ISA

Instruction size (bits)
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8 (including
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single, double
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double
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Address space (size, model)
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Data addressing modes

Separate floating-point
registers

Integer registers (number,
model, size)

Floating-point format
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in ARMv8, specifically bit field manipulation, additional system instructions, and 
synchronization support. Thus, the 32-bit instructions in Thumb2 constitute a 
unique ISA.

Earlier versions of the 16-bit instruction sets for MIPS (MIPS16) and ARM 
(Thumb), took the approach of creating a separate mode, invoked by a procedure 
call, to transfer control to a code segment that employed only 16-bit instructions.

The 16-bit instruction set was not complete and was only intended for user 
programs that were code-size critical.

One complication of this description is that some of the older RISCs have been 
extended over the years. We decided to describe the most recent versions of the 
architectures: ARMv8 (the 64-bit architecture AArch64), MIPS64 R6, Power v3.0, 
RV64G, and SPARC v9 for the desktop/server/PMD, and the 16-bit subset of the 
ISAs for microMIPS64, RV64GC, and Thumb-2.

The remaining sections proceed as follows. After discussing the addressing 
modes and instruction formats of our RISC architectures, we present the survey of 
the instructions in five steps:

n	 Instructions found in the RV64G core.

n	 Instructions not found in the RV64G or RV64GC but found in two or more 
of the other architectures. We describe and organize these by functionality, 
e.g., instructions that support extended integer arithmetic.

FIGURE D.2  Summary of three recent architectures for embedded applications. All three use 16-bit extensions of a base 
instruction set. Except for number of data address modes and a number of instruction set details, the integer instruction sets of these 
architectures are similar. Contrast this with Figure D.29. An earlier 16-bit version of the MIPS instruction set, called MIPS16, was created 
in 1995 and was replaced by microMIPS32 and microMIPS64. The first Thumb architecture had only 16-bit instructions and was created 
in 1996. Thumb-2 is built primarily on ARMv7, the 32-bit ARM instruction set; it offers 16 registers. RISC-V also defines RV32E, which 
has only 16 registers, includes the 16-bit instructions, and cannot have floating point. It appears that most implementations for embedded 
applications opt for RV32C or RV64GC.

microMlPS64
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Instruction size (bits)

Address space (size, model)

Data alignment

Data addressing modes

Integer registers (number, model, size)

Integer registers accessible by most 16-bit
instructions (which use should specifiers)

2009

16/32

32/64 bits, flat
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2

31 GPR x 64 bits

8 GPR + SP + GP
+RA
GPRs: 0, 2-7, 17,
or 2-7, 16,17

RV64GC

2016

16/32

32/64 bits, flat

Aligned, preferred

1

31 GPR x 64 bits

8 GPRs + SP
GPRs: 8-15

Thumb-2

2003

16/32

32/64 bits, flat

Aligned

6

15 GPR x 32 bits

8 GPR + SP x 32 bits
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n	 Instruction groups unique to ARM, MIPS, Power, or SPARC, organized by 
function.

n	 Multimedia extensions of the desktop/server/PMD RISCs

n	 Digital signal-processing extensions of the embedded RISCs

Although the majority of the instructions in these architectures are included, we 
have not included every single instruction; this is especially true for the Power and 
ARM ISAs, which have many instructions.

Addressing Modes and Instruction Formats
Figure D.3 shows the data addressing modes supported by the desktop/server/ 
PMD architectures. Since all, but ARM, have one register that always has the value 
0 when used in address modes, the absolute address mode with limited range can 
be synthesized using register 0 as the base in displacement addressing. (This register 
can be changed by arithmetic-logical unit (ALU) operations in PowerPC, but is 
always zero when it is used in an address calculation.) Similarly, register indirect 
addressing is synthesized by using displacement addressing with an offset of 0. 
Simplified addressing modes is one distinguishing feature of RISC architectures.

As Figure D.4 shows, the embedded architectures restrict the registers that 
can be accessed with the 16-bit instructions, typically to only 8 registers, for most 
instructions, and a few special instructions that refer to other registers. Figure D.5 

FIGURE D.3  Summary of data addressing modes supported by the desktop architectures, where B, H, W, D indicate 
what datatypes can use the addressing mode. Note that ARM includes two different types of address modes with updates, one 
of which is included in Power.

Register + offset (displacement or based)

Register + register (indexed)

Register + scaled register (scaled)

Register + register + offset

Register + offset & update register to
effective address (based with update)

Register & update register to register +
offset (register with update)

Register + Register & update register to
effective address (indexed with update)

PC-relative (PC + displacement)

B,H, W,D B,H, W,D B,H, W,D

B,H, W,D

B,H, W,D

B,H, W,D

B,H, W,D B,H, W,D

B,H, W,DB,H, W,D

B,H, W,D

B,H, W,D

B,H, W,D

B,H, W,D

B,H, W,D

W,D W,D

W,D

ARMv8 MIPS64R6 Powerv3.0 RV64G SPARCv9
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shows the data addressing modes supported by the embedded architectures in 
their 16-bit instruction mode. These versions of load/store instructions restrict the 
registers that can be used in address calculations, as well as significantly shorten the 
immediate fields, used for displacements.

References to code are normally PC-relative, although jump register indirect 
is supported for returning from procedures, for case statements, and for pointer 
function calls. One variation is that PC-relative branch addresses are often shifted 
left 2 bits before being added to the PC for the desktop RISCs, thereby increasing 
the branch distance. This works because the length of all instructions for the 
desktop

RISCs is 32 bits and instructions must be aligned on 32-bit words in memory. 
Embedded architectures and RISC V (when extended) have 16-bit-long instructions 
and usually shift the PC-relative address by 1 for similar reasons.

Figure D.6 shows the most important instruction formats of the desktop/server/ 
PMD RISC instructions. Each instruction set architecture uses four primary 

FIGURE D.5  Summary of data addressing modes supported by the embedded architectures. 
microMIPS64, RV64c, and Thumb-2 show only the modes supported in 16-bit instruction formats. The stack pointer 
in RV64GC and microMIPS64 is a designed GPR; it is another version of r31 is Thumb-2. In microMIPS64, the 
global pointer is register 30 and is used by the linkage convention to point to the global variable data pool. Notice that 
typically only 8 registers are accessible as base registers (and as we will see as ALU sources and destinations).

Addressing mode microMIPS64 RV64GC Thumb-2

Register + offset
(displacement or based)

4-bit offset, one of 8
registers

5-bit offset, one of 8
registers

5-bit offset, one of 8
registers

stack pointer; 5-bit
offset

stack pointer; 8-bit
offset

stack pointer or global
pointer; 5-bit offset

PC-relative data

Using special register

FIGURE D.4  Register encodings for the 16-bit subsets of microMIPS64, RV64GC, and 
Thumb-2, including the core general purpose registers, and special-purpose registers 
accessible by some instructions.

Register specifier microMIPS64 RV64GC Thumb-2

3-bit 2-7,16,17 8-15 0-7

o (when used
in load/store)

14

2

1

stack pointer;
5-bit offset

stack pointer;
8-bit offset

29

28

31

stack pointer or global
pointer; 5-bit offset

stack pointer register

global pointer register

return address register

Using special register
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FIGURE D.6  Instruction formats for desktop/server RISC architectures. These four formats 
are found in all five architectures. (The superscript notation in this figure means the width of a field in bits.) 
Although the register fields are located in similar pieces of the instruction, be aware that the destination 
and two source fields are sometimes scrambled. Op = the main opcode, Opx = an opcode extension, Rd = 
the destination register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an 
immediate, address, mask, or sift amount). Although the labels on the instruction formats tell where various 
instructions are encoded, there are variations. For example, loads and stores, both use the ALU immediate 
form in MIPS. In RISC-V, loads use the ALU immediate format, while stores use the branch format.
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instruction formats, which typically include 90–98% of the instructions. The 
register-register format is used for register-register ALU instructions, while the 
ALU immediate format is used for ALU instructions with an immediate operand 
and also for loads and stores. The branch format is used for conditional branches, 
and the jump/call format for unconditional branches (jumps) and procedures calls.

There are a number of less frequently used instruction formats that Figure D.6 
leaves out. Figure D.7 summarizes these for the desktop/server/PMD architectures.

Unlike, their 32-bit base architectures, the 16-bit extensions (microMIPS64, 
RV64GC, and Thumb-2) are focused on minimizing code. As a result, there are a 
larger number of instruction formats, even though there are far fewer instructions.

FIGURE D.7  Other instruction formats beyond the four major formats of the previous figure. In some cases, there 
are formats very similar to one of the four core formats, but where a register field is used for other purposes. The Power architecture also 
includes a number of formats for vector operations.

Architecture

Additional
instruction
formats Format function and use

ARMv8

MIPS64

Power

RV64

SPARC 3

2

At least 10 (many
small variations);
major forms are
shown.

Logical immediates with 13-bit immediate field.

Shifts with constant amount.(16-bit opcode)

16-bit immediate form

Exclusive operations: three register fields

Branch register: long opcode

Load/store with address mode bits.

A PC-relative set of load/stores using register-immediate format but with
18-bit immediates (since the other source is the PC).

DQ-mode: uses the ALU immediate form but takes four bits of the
displacement for other functions.

DS-mode: uses the ALU immediate form but takes two bits of the
displacement for other functions.

DX-fonn: Like register-immediate, but with a register-source replaced by PC.

MD, MDS formats: like register-register but used for shifts and rotates.

x, XS, and several minor variations: used for indexed addressing modes,
shifts, and a variety of extended purposes.

Z22, Z23 formats: used for manipulating floating point numbers

SB format: a variant of the branch format with different immediate treatment

UJ format: a variant of the jump/call format with different immediate treatment

Another fonnat for conditional branches containing 3 more bits of
displacement (22 total versus 19) but no prediction hints.

A format with 22-bit immediate used to load the upper half of a register,

A format for conditional branches based on a register compare with zero.

9 (not including a
number of small
variations or the
vector extensions)

1
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microMIPs64 and RV64GC have eight and seven major formats, respectively, 
and Thumb-2 has 15. As Figure D.8 shows, these involve varying number of 
register operands (0 to 3), different immediate sizes, and even different size register 
specifiers, with a small number of registers accessible my most instructions, and 
fewer instructions able to access all 32 registers.

Instructions
The similarities of each architecture allow simultaneous descriptions, starting with 
the operations equivalent to the RISC-V 64-bit ISA.

RV64G Core Instructions

Almost every instruction found in the RV64G is found in the other architectures, 
as Figures D.9 through D.19 show. Instructions are listed under four categories: 
data transfer (Figure D.9); arithmetic, logical (Figure D.10); control (Figure D.11 
and Figure D.12); and floating point (Figure D.13).

If a RV64G core instruction requires a short sequence of instructions in other 
architectures, these instructions are separated by semicolons in Figure D.9 through 
Figure D.13. (To avoid confusion, the destination register will always be the leftmost 
operand in this appendix, independent of the notation normally used with each 
architecture.)

Compare and Conditional Branch

Every architecture must have a scheme for compare and conditional branches, 
but despite all the similarities, each of these architectures has found a 
different way to perform the operation! Figure D.11 summarizes the control 
instructions, while Figure D.12 shows details of how conditional branches are 
handled. SPARC uses the traditional four condition code bits stored in the 
program status word: negative, zero, carry, and overflow. They can be set on 
any arithmetic or logical instruction; unlike earlier architectures, this setting 
is optional on each instruction. An explicit option leads to fewer problems in 
pipelined implementation. Although condition codes can be set as a side effect 
of an operation, explicit compares are synthesized with a subtract using r0 as the 
destination. SPARC conditional branches test condition codes to determine all 
possible unsigned and signed relations. Floating point uses separate condition 
codes to encode the EEE 754 conditions, requiring a floating-point compare 
instruction. Version 9 expanded SPARC branches in four ways: a separate set 
of condition codes for 64-bit operations; a branch that tests the contents of a 
register and branches if the value is =,not=,<,<=,>=,or <=0; three more 
sets of floating-point condition codes; and branch instructions that encode 
static branch prediction.

Power also uses four condition codes: less than, greater than, equal, and 
summary overflow, but it has eight copies of them. This redundancy allows the 
Power instructions to use different condition codes without conflict, essentially 



D-12	 Appendix D  Survey of Instruction Set Architectures

FIGURE D.8  Instruction formats for the 16-bit instructions of microMIPS64, RV64GC, and Thumb-2. For 
instructions with a destination and two sources, but only two register fields, the instruction uses one of the registers as both source 
and destination. Note that the extended opcode field (or function field) and immediate field sometimes overlap or are identical. 
For RV64GC and microMIPS64, all the formats are shown; for Thumb-2, the Miscellaneous format includes 22 instructions with 
12 slightly different formats; we use the extended opcode field, but a few of these instructions have immediate or register fields.

Architecture

Opcode
main:
extended 

Register
specifiers x 
length

Immediate
field
length  Typical instructions

microMIPS64

10 Jumps

6

115

:

5 Register-register operation (32 registers) and Load 
using SP as base register; any destination

7 Branches equal/not equal zero. Loads using GP. as base.

Register-register operation, rd/rs1, and rs2; 8 registers

3 Register-register immediate, rd/rs1, and rs2; 8 registers

4 Loads and stores; 8 registers

Register-register operation, rd, and rs1; 8 registers

Register-register operation; 32 registers.

RV64GC

11 Jumps

7 Branch

8 Immediate one source register.

6 Store using SP as base.

6 ALU immediate and load using SP as base.

Register-register operation

5 Loads and stores using 8 registers. 

Thumb-2

5 Shift, move, load/store word/byte

8 immediates: add, subtract, move, and compare

8
Load/store with stack pointer as base, Add to SP or PC,
Load/store multiple

Load register indexed

8 Conditional branch, system instruction

Miscellaneous: 22 different instructions with 12 formats
(includes compare and branch on zero, pop/push registers,
adjust stack pointer, reverse bytes, IF-THEN instruction).   

5 8 Load relative to PC

Unconditional branch

Add/subtract

6

6

6

6

6:4

6:4

2:4

4:3

4:12

6:1

6:4

6:6

6:1

2:3

2:3

2:3

2:3

2:3

2:3

3:2

3:2

4:1

4:4

6:3

none

2x3

2x3

2x5

2x5

3x3

3x3

2x3

1x4

1x5

1x3

2x3

2x3

1x3

1x3

1x5

1x5

2x3

2x3

1x3

1x3

1x3

1x4, 1x3 Special data processing

Logical data processing

Branch and change instruction set (ARM vs. Thumb)
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FIGURE D.9  Desktop RISC data transfer instructions equivalent to RV64G core. A sequence of instructions to synthesize 
a RV64G instruction is shown separated by semicolons. The MIPS and Power instructions for atomic operations load and conditionally 
store a pair of registers and can be used to implement the RV64G atomic operations with at most one intervening ALU instruction. The 
SPARC instructions: compare-and-swap, swap, LDSTUB provide atomic updates to a memory location and can be used to build the 
RV64G instructions. The Power3 instructions provide all the functionality, as the RV64G instructions, depending on a function field.

Load byte
signed/unsigned.

Load halfword signed,
unsigned

Load word

Load double

Load float register SP/DP

Store byte

Store half word

Store word

Store double word

Store float SP/DP

Load reserved

Store conditional
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register
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instruction stream

Atomic operations
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LDEXB, LDEXH
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SW

SD
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EXTSB
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STW

SD
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LD

FL_
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SD
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STW; FLDWX

FSTWX; LDW

Fence
Fence. i

AMOSWAP.W/D,
AMOADD,W.D,
AMOAND.W/D,
AMOXOR.W/D,
AMOOR.W/D,
AMOMIN_.W/D,
AMOMAX_.W/D

LD_B

LD_H

LD_W

LDD

LD_F

STB

STH

ST

STD

ST_F

RD__,WR__

ST; LDF

STF; LD

MEMBAR
FLUSH

CASA, SWAP,
LDSTUB

Data transfer
(instruction formats)

Instruction name

R-I R-I R-IR-I, R-R R-I, R-R

ARMv8 MIPS64 Power RV64G SPARC
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FIGURE D.10  Desktop RISC arithmetic/logical instructions equivalent to RISC-V integer ISA. MIPS also provides 
instructions that trap on arithmetic overflow, which are synthesized in other architectures with multiple instructions. Note that in the 
“Arithmetic/logical” category all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC 
offers immediate versions of these instructions but uses a single mnemonic. (Of course, these are separate opcodes!)

Add word, immediate

Add double word

Subtract

Subtract double word

Multiply

Divide

Remainder

And

Or

Xor

Load bits 31..16

Load upper bits of PC

Shift left logical, double
word and word versions,
immediate and variable

Shift right logical, double
word and word verion,
immediate and variables

Shift right arithmetic,
double word and word
verions,immediate and
variable

Compare

ADD,  ADDI

ADDX

SUB, SUBI SUB’ SUBI

SUB, SUBISUBX

MUL, SUMUL

MULX,
SMULX

AND, ANDI AND, ANDI AND, ANDI

AND, ANDI AND, ANDI

AND, ANDI

AND, ANDI

OR, ORI

XOR, XORI XOR, XORI XOR, XORI XOR, XORI

MOV

ADR

LSL

RSL

RSA

CMP

ADDU,
ADDUI,

DADDU,
DADDUI

DSUBU,
DSUBUI

MUL, MULU,
DMUL, DMULU

DIV,
DIVU,DDIV,
DDIVU

MOD, MODU
DMOD, DMODU

OR, ORI OR, ORI OR, ORI

LUI

ADDIUPC

SLLV, SLL

SRLV, SRL

SRAV, SRA

SLT/U, SL
TI/U

CMP (I) CLR

SRAW

SLT/U,
SLTI/U

SUBcc
r0 , . . .

SRA

SRL

SRA, SRAI,
SRAW,
SRAWI

RLWINM
32 - i

ADDPCIS

RLWINM

ADDIS

SRL, SRLI,
SRLW,
SRLWI

AUIPC
SLL, SLLI,
SLLW,
SLLWI

SLL

ADDIS SETHI
(BFMT.)

XOR

OR

AND

MODSW,
MODUW

REM, REMU,
REMW,
REMWU

DIVW DIV, DIVU,
DIVW,
DIVWU

DIVX

MULXMUL, MULU,
MULW,
MULWU

MULLW,
MULLI

SUBF

SUBF SUBW,
SUBWI

SUB

SUB

ADD

ADDADDW,
ADDWI

Arithmetic/ logical
(instruction formats)

Instruction name

R-R, R-I

ARM v8

R-R, R-I

MIPS64

R-R, R-I R-R, R-IR-R, R-I

Power v3 RISC-V SPARC v.9



	 D.2  A Survey of RISC Architectures for Desktop, Server, and Embedded Computers	 D-15

FIGURE D.11  Desktop RISC control instructions equivalent to RV64G.

Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARCv.9

Branch on integer
compare

B.cond, 
CBZ, CBNZ

BEQ, BNE, 
B_Z (<, 
>, 
<=, >=) 
OR
S***; BEZ

BC BEQ, BNE, 
BLT, BGE, 
BLTU, BGEU 

BR_Z, BPcc 
(<, >,
<=, >=, =, 
not=)

Branch on floating-point 
compare

B.cond BC1T, 
BC1F

BC BEZ, BNZ FBPfcc (<,>, 
<=,
>=, =,...)

Jump, jump register B, BR J, JR B, BCLR, 
BCCTR

 JAL, JALR 
(with x0)

BA, JMPL 
r0,...

Call, call register BL, BLR JAL,
JALR

BL, BLA, 
BCLRL, 
BCCTRL

JAL, JALR CALL, JMPL

Trap SVC, HVC, 
SMC

BREAK TW, TWI ECALL Ticc, SIR

Return from interrupt ERET JR; ERET RFI DONE, RETRY,
RETURN 

EBREAK

FIGURE D.12  Summary of five desktop RISC approaches to conditional branches. Integer compare on SPARC is 
synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARMv8 MIPS64 PowerPC RISC-V SPA RCv.9

Number of condition code bits 
(integer and FP)

16 (8 + the 
inverse)

none none

Basic compare instructions
(integer and FP)

1 integer; 1 
FP

1 integer, 1 FP 4 integer, 2 FP 2 integer; 3 FP 1 FP

Basic branch instructions
(integer and FP)

1 2 integer, 1 FP 1 both 4 integer (used 
for FP as well)

3 integer,
1 FP

Compare register with register/
constant and branch

— =, not= — —

Compare register to zero and 
branch

— =, not=, <, <=, 
>, >=

— =, not=, <, <=, 
>, >=

=, not=, <, 
<=, >, >=

8 4 both 2   4
integer,
4   2 FP

=, not =, >=, <
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FIGURE D.13  Desktop RISC floating-point instructions equivalent to RV64G ISA with an empty entry meaning 
that the instruction is unavailable. ARMv8 uses the same assembly mnemonic for single and double precision; the register 
designator indicates the precision. “∗” is used as an abbreviation for S or D. For floating point compares all conditions: equal, not equal, 
less than, and less then or equal are provided. Moves operate in both directions from/to integer registers. Classify sets a register based on 
whether the floating point quantity is plus or minus infinity, denorm, +/ – 0, etc.). The sign-injection instructions take two operands, but 
are primarily used to form floating point move, negate, and absolute value, which are separate instructions in the other ISAs.

Floating point (instruc-
tion formats)

Multiply add; Negative 
multiply add: single, 
double

Multiply subtract single, 
double, Negative multiply 
subtract: single, double

Copy sign or negative sign 
double or single to another 
FP register

Replace sign bit with XOR 
of sign bits single double

Maximum or minimum 
single, double

Classify floating point 
value single double

Convert between FP single 
or double and FP single or 
double, OR integer single 
or double, signed and 
unsigned with rounding

R-R R-R R-R R-R R-R

Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Add single, double FADD ADD.* FADD* FADD.* FADD*

Subtract single, double FSUB SUB.* FSUB* FSUB.* FSUB*

Multiply single, double FMUL MUL.* FMUL* FMUL.* FMUL*

Divide single, double FDIV DIV.* FDIV* FDIV.* FDIV*

Square root single, double FSQRT SQRT.* FSQRT* FSQRT.* FSQRT*

FMADD, 
FNMADD

MADD.*
NMAD.*

FMADD*, 
FNMADD*

FMADD.*
FNMADD.*

FMSUB, 
FNMSUB

MSUB.*, 
NMSUB.*

FMSUB*, 
FNMSUB*

FMSUB.*,
FNMSUB.*

FMOV, 
FNEG

FMOV.*, FNEG.* FMOV*, 
FNEG*

FSGNJ.*, 
FSGNJN.*

FMOV*, 
FNEG*

FABS FABS.* FABS* FSGNJX.* FABS*

FMAX, 
FMIN

MAX.*, MIN.* FMAX.*, FMIN.*

FCLASS.*CLASS.*

Compare FCMP CMP.* FCMP* FCMP.* FCMP*

FCVT CVT, CEIL, 
FLOOR

FCVT F*TO*

giving Power eight extra 4-bit registers. Any of these eight condition codes can 
be the target of a compare instruction, and any can be the source of a conditional 
branch. The integer instructions have an option bit that behaves as if the integer 
is followed by a compare to zero that sets the first condition “register.”Power also 
lets the second “register” be optionally set by floating-point instructions. PowerPC 
provides logical operations among these eight 4-bit condition code registers 
(CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more complex 
conditions to be tested by a single branch. Finally, Power includes a set of branch 
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count registers that are automatically decremented when tested, and can be used 
in a branch condition. There are also special instructions for moving from/to the 
condition register.

RISC-V and MIPS are most similar. RISC-V uses a compare and branch with 
a full set of arithmetic comparisons. MIPS also uses compare and branch, but 
the comparisons are limited to equality and tests against zero. This limited set of 
conditions simplifies the branch determination (since an ALU operation is not 
required to test the condition), at the cost of sometimes requiring the use of a 
set-on-less-than instruction (SLT, SLTI, SLTU, SLTIU), which compares 
two operands and then set the destination register to 1 if less and to 0 otherwise. 
Figure D.12 provides additional details on conditional branch. RISC-V floating 
point comparisons sets an integer register to 0 or 1, and then use conditional 
branches on that content. MIPS also uses separate floating point compare, which 
sets a floating-point register to 0 or 1, which is then tested by a floating-point 
conditional branch.

ARM is similar to SPARC, in that it provides four traditional condition codes that 
are optionally set. CMP subtracts one operand from the other and the difference sets 
the condition codes. Compare negative (CMN) adds one operand to the other, and 
the sum sets the condition codes. TST performs logical AND on the two operands 
to set all condition codes but overflow, while TEQ uses exclusive OR to set the first 
three condition codes. Like SPARC, the conditional version of the ARM branch 
instruction tests condition codes to determine all possible unsigned and signed 
relations. ARMv8 added both bit-test instructions and also compare and branch 
against zero. Floating point compares on ARM, set the integer condition codes, 
which are used by the B.cond instruction.

As Figure D.13 shows the floating-point support is similar on all five architectures.

RV64GC Core 16-bit Instructions

Figures D.14 through D.17 summarize the data transfer, ALU, and control 
instructions for our three embedded processors: microMIPS64, RV64GC, and 
Thumb-2. Since these architectures are all based on 32-bit or 64-bit versions of the 
full architecture, we focus our attention on the functionality implemented by the 
16-bit instructions. Since floating-point is optional, we do not include it.

Instructions: Common Extensions beyond RV64G
Figures D.15 through D.18 list instructions not found in Figures D.9 through D.13 
in the same four categories (data transfer, ALU, and control. The only significant 
floating-point extension is the reciprocal instruction, which both MIPS64 and 
Power support. Instructions are put in these lists if they appear in more than one 
of the standard architectures. Recall that Figure D.3 on page 6 showed the address 
modes supported by the various instruction sets. All three processors provide 
more address modes than provided by RV64G. The loads and stores using these 
additional address modes are not shown in Figure D.17, but are effectively additional 
data transfer instructions. This means that ARM has 64 additional load and store 
instructions, while Power3 has 12, and MIPS64 and SPARVv9 each have 4.



FIGURE D.14  Embedded RISC data transfer instructions equivalent to RV64GC 16-bit ISA; a blank indicates that 
the instruction is not a 16-bit instruction. Rather than show the instruction name, where appropriate, we show the number of 
registers that can the base register for the address calculation, followed by the number of registers that can be the destination for a load 
or the source for a store, and finally, the size of the immediate used for address calculation. For example: 8; 8; 5 for a load means that 
there are 8 possible base registers, 8 possible destination registers for the load, and a 5-bit offset for the address calculation. For a store, 
8; 8; 5, specifies that the source of the value to store comes from one of 8 registers. Remember that Thumb-2 also has 32-bit instructions 
(although not the full ARMv8 set) and that RV64GC and microMIPS64 have the full set of 32-bit instructions in RV64I or MIPS64.

Instructionname 
microMIPS64
rs1;rs2/dst; o�set

RV64GC
rs1;rs2/dst; o�set

Thumb-2
rs1;rs2/dst; o�set

Load word 8;8;4 8;8;5 8;8;5

Load double word 8;8;5

Load word with stack pointer as base register 1;32;5 1;32;6 1;3;8

Load double word with stack pointer as base register 1;32;6

Store word 8;8;4 8;8;5 8;8;5

Store double word 8;8;5

Store word with stack pointer as base register 1;32;5 1;32;6 1;3;8

Store double with stack pointer as base register 1;32;6

FIGURE D.15  ALU instructions provided in RV64GC and the equivalents, if any, in the 16-bit instructions of 
microMIPS64 or Thumb-2. An entry shows the number of register sources/destinations, followed by the size of the immediate field, 
if it exists for that instruction. The add-to-stack pointer with scaled immediate instructions are used for adjusting the stack pointer and 
creating a pointer to a location on the stack. In Thumb, the add has two forms one with three operands from the 8-register subset (Lo) 
and one with two operands but any of 16-registers.

Instruction Name/Function microMIPS64 RV64GC Thumb-2

Load immediate

Load upper immediate

add immediate

add immediate to stack pointer

add immediate to stack pointer store
in reg.

shift left/right logical

shift right arithmetic

AND immediate

move

add

AND, OR, XOR

suptract

add word, suptract word (32 bits)
& sign extend

8;7

32;4

1;9

1;8;6

8;8;3 (shift amt.)

8;8;4

32;32

8;8;8

8;8

8;8;8

32;6

32;6

32;6

32;6

1;8;6
(adds 4x imm.)

1;6
(adds 4x imm.)

8;6(shift amt.)

8;6(shift amt.)

8;6

32;32

32;32

8;8

8;8

8;8;3

8;8

8;8

1;7

8;8;5 (shift amt.)

8;8;5 (shift amt.)

8;8

8;8

8;8;8

16;16

8;8;8
16;16

add immediate word (32 bits) & sign
extend
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To accelerate branches, modern processors use dynamic branch prediction. Many 
of these architectures in earlier versions supported delayed branches, although 
they have been dropped or largely eliminated in later versions of the architecture, 
typically by offering a nondelayed version, as the preferred conditional branch. The 
SPARC “annulling” branch is an optimized form of delayed branch that executes the 
instruction in the delay slot only if the branch is taken; otherwise, the instruction is 
annulled. This means the instruction at the target of the branch can safely be copied 

FIGURE D.16  Summary of three embedded RISC approaches to conditional branches. A blank indicates that 
the instruction does not exist. Thumb-2 uses 4 condition code bits; it provides a conditional branch that tests the 4-bit condition 
code and has a branch offset of 8 bits.

microMIPS64 RV64GC Thumb-2

10-bit offsetUnconditional branch 11-bit offset 11-bit offset

Unconditional branch and link 11-bit offset 11-bit offset

Unconditional branch to register w/wo link any of 32 registers any of 32 registers

Compare register to zero (=/!=) and branch 8 registers; 7-bit 
offset

8 registers; 8-bit 
offset

no: but see caption

FIGURE D.17  Data transfer instructions not found in RISC-V core but found in two or more of the five desktop 
architectures. SPARC requires memory accesses to be aligned, while the other architectures support unaligned access, albeit, 
often with major performance penalties. The other architectures do not require alignment, but may use slow mechanisms to handle 
unaligned accesses. MIPS provides a set of instructions to handle misaligned accesses: LDL and LDR (load double left and load 
double right instructions) work as a pair to load a misaligned word; the corresponding store instructions perform the inverse. The 
Prefetch instruction causes a cache prefetch, while CACHE provides limited user control over the cache state.

Function Definition ARMv8 MIPS64 PowerPC SPARC v.9

Load/store 
multiple registers 

Loads or stores 2 or 
more registers 

Load pair, 
store pair

Load store 
multiple (<=31 
registers), 

Cache 
manipulation and 
prefetch

Modifies status of a 
cache line or does a 
prefetch

Prefetch CACHE, 
PREFETCH

Prefetch Prefetch

FIGURE D.18  Control instructions not found in RV64G core but found in two or more of the other 
architectures. MIPS64 Release 6 has nondelayed and normal delayed branches, while SPARC v.9 has delayed branches 
with cancellation based on the static prediction.

Name Definition ARMv8 MIPS64 PowerPC SPARC v.9

Delayed branches Delayed branches 
with/without cancellation

BEQ, BNE, BGTZ, 
BLEZ, BCxEQZ, 
BCxNEZ

BPcc, A,
FPBcc, A

Conditional trap Traps if a condition is true TEQ, TNE, TGE, 
TLT, TGEU, TLTU

TW, TD, 
TWI, TDI

Tcc
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into the delay slot since it will only be executed if the branch is taken. The restrictions 
are that the target is not another branch and that the target is known at compile time. 
(SPARC also offers a nondelayed jump because an unconditional branch with the 
annul bit set does not execute the following instruction.).

In contrast to the differences among the full ISAs, the 16-bit subsets of the 
three embedded ISAs have essentially no significant differences other than those 
described in the earlier figures (e.g., size of immediate fields, uses of SP or other 
registers, etc.).

Now that we have covered the similarities, we will focus on the unique features 
of each architecture. We first cover the desktop/server RISCs, ordering them by 
length of description of the unique features from shortest to longest, and then the 
embedded RISCs.

Instructions Unique to MIPS64 R6
MIPS has gone through six generations of instruction sets. Generations 1–4 
mostly added instructions. Release 6 eliminated many older instructions but also 
provided support for nondelayed branches and misaligned data access. Figure D.19 
summarizes the unique instructions in MIPS64 R6.

Instructions Unique to SPARC v.9
Several features are unique to SPARC. We review the major figures and then 
summarize those and small differences in a figure.

Register Windows

The primary unique feature of SPARC is register windows, an optimization for 
reducing register traffic on procedure calls. Several banks of registers are used, with 
a new one allocated on each procedure call. Although this could limit the depth of 

FIGURE D.19  Additional instructions provided MIPS64 R6. In addition, there are several instructions for supporting virtual 
machines, most are privileged.

Instruction 
class Instruction name(s) Function

ALU Byte align Take a pair of registers and extract a word or double word of bytes. 
Used to implement unaligned byte copies. 

Align Immediate to PC
Adds the upper 16 bits of the PC to an immediate shifted left 16 bits 
and puts the result in a register; Used to get a PC-relative address. 

Bit swap Reverses the bits in each byte of a register.

No-op and link Puts the value of PC+8 into a register

Logical NOR Computes the NOR of 2 registers

Control transfer Branch and Link conditional      Compares a register to 0 and does branch if condition is true; places 
the return address in the link register.

Jump indexed, Jump and 
link indexed

Adds an offset and register to get new PC, w/wo link address
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procedure calls, the limitation is avoided by operating the banks as a circular buffer. 
The knee of the cost-performance curve seems to be six to eight banks; programs 
with deeper call stacks, would need to save and restore the registers to memory.

SPARC can have between 2 and 32 windows, typically using 8 registers each 
for the globals, locals, incoming parameters, and outgoing parameters. (Given that 
each window has 16 unique registers, an implementation of SPARC can have as 
few as 40 physical registers and as many as 520, although most have 128 to 136, so 
far.) Rather than tie window changes with call and return instructions, SPARC has 
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s 
window by pointing to the next window of registers in addition to performing an 
add instruction. The trick is that the source registers are from the caller’s window 
of the addition operation, while the destination register is in the callee’s window. 
SPARC compilers typically use this instruction for changing the stack pointer 
to allocate local variables in a new stack frame. RESTORE is the inverse of SAVE, 
bringing back the caller’s window while acting as an add instruction, with the 
source registers from the callee’s window and the destination register in the caller’s 
window. This automatically deallocates the stack frame. Compilers can also make 
use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could slow 
down the clock rate. This was not the case for early implementations. The SPARC 
architecture (with register windows) and the MIPS R2000 architecture (without) 
have been built in several technologies since 1987. For several generations the 
SPARC clock rate has not been slower than the MIPS clock rate for implementations 
in similar technologies, probably because cache access times dominate register 
access times in these implementations. With the advent of multiple issue, which 
requires many more register ports, as will as register renaming or reorder buffers, 
register windows posed a larger penalty. Register windows were a feature of the 
original Berkeley RISC designs, and their inclusion in SPARC was inspired by 
those designs. Tensilica is the only other major architecture in use today employs 
them, and they were not included in the RISC-V ISA.

Fast Traps

SPARCv9 includes support to make traps fast. It expands the single level of traps 
to at least four levels, allowing the window overflow and underflow trap handlers 
to be interrupted. The extra levels mean the handler does not need to check for 
page faults or misaligned stack pointers explicitly in the code, there by making the 
handler faster. Two new instructions were added to return from this multilevel 
handler: RETRY (which retries the interrupted instruction) and DONE (which does 
not). To support user-level traps, the instruction RETURN will return from the trap 
in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. 
The designers of SPARC spent some time thinking about languages like LISP and 
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Smalltalk, and this influenced some of the features of SPARC already discussed: 
register windows, conditional trap instructions, calls with 32-bit instruction 
addresses, and multi-word arithmetic (see Taylor et al. [1986] and Ungar et al. 
[1984]). A small amount of support is offered for tagged data types with operations 
for addition, subtraction, and hence comparison. The two least-significant bits 
indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc 
set the overflow bit if either operand is not tagged as an integer or if the result is too 
large. A subsequent conditional branch or trap instruction can decide what to do. 
(If the operands are not integers, software recovers the operands, checks the types 
of the operands, and invokes the correct operation based on those types.) It turns 
out that the misaligned memory access trap can also be put to use for tagged data, 
since loading from a pointer with the wrong tag can be an invalid access. Figure 
D.20 shows both types of tag support.

Figure D.21 summarizes the additional instructions mentioned above as well as 
several others.

Instructions Unique to ARM
Earlier versions of the ARM architecture (ARM v6 and v7) had a number of 
unusual features including conditional execution of all instructions, and making 
the PC a general purpose register. These features were eliminated with the arrival 
of ARMv8 (in both the 32-bit and 64-bit ISA). What remains, however, is much 
of the complexity, at least in terms of the size of the instruction set. As Figure D.3  
on page 6 shows, ARM has the most addressing modes, including all those listed 

FIGURE D.20  SPARC uses the two least significant bits to encode different data types 
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single cycle as long as the 
operands and the result are integers. (b) The misaligned trap can be used to catch invalid memory accesses, 
such as trying to use an integer as a pointer. For languages with paired data like LISP, an offset of –3 can be 
used to access the even word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–
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in the table; remember that these addressing modes add dozens of load/store 
instructions compared to RVG, even though they are not listed in the table that 
follows. As Figure D.6 on page D-8 shows, ARMv8 also has by far the largest 
number of different instruction formats, which reflects a variety of instructions, as 
well as the different addressing modes, some of which are applicable to some loads 
and stores but not others.

Most ARMv8 ALU instructions allow the second operand to be shifted before 
the operation is completed. This extends the range of immediates, but operand 
shifting is not limited to immediates. The shift options are shift left logical, shift 
right logical, shift right arithmetic, and rotate right. In addition, as in Power3, most 
ALU instructions can optionally set the condition flags. Figure D.22 includes the 
additional instructions, but does not enumerate all the varieties (such as optional 
setting of the condition flags); see the caption for more detail. While conditional 
execution of all instructions was eliminated, ARMv8 provides a number of 
conditional instructions beyond the conditional move and conditional set, 
mentioned earlier.

Instructions Unique to Power3
Power3 is the result of several generations of IBM commercial RISC machines— 
IBM RT/PC, IBM Power1, and IBM Power2, and the PowerPC development, 
undertaken primarily by IBM and Motorola. First, we describe branch registers 
and the support for loop branches. Figure D.23 then lists the other instructions 
provided only in Power3.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return 
address on procedure call, Power3 puts the address into a special register called the 
link register. Since many procedures will return without calling another procedure, 
link doesn’t always have to be saved away. Making the return address a special 
register makes the return jump faster since the hardware need not go through the 
register read pipeline stage for return jumps.

FIGURE D.21  Additional instructions provided in SPARCv9. Although register windows are by far the most significant 
distinction, they do not require many instructions!

Instruction 
class Instruction name(s) Function

Data transfer SAVE, RESTORE Save or restore a register window

Nonfaulting load Version of load instructions that do not generate faults on address 
exceptions; allows speculation for loads.

ALU Tagged add, Tagged subtract, 
with and without trap 

Perform a tagged add/subtract, set condition codes, optionally 
trap.

Control transfer Retry, Return, and Done To provide handling for traps.

Floating Point 
Instructions

FMOVcc Conditional move between FP registers based on integer or FP 
condition codes.
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In a similar vein, Power3 has a count register to be used in for loops where the 
program iterates for a fixed number of times. By using a special register the branch 
hardware can determine quickly whether a branch based on the count register is 
likely to branch, since the value of the register is known early in the execution cycle. 
Tests of the value of the count register in a branch instruction will automatically 
decrement the count register.

Given that the count register and link register are already located with the 
hardware that controls branches, and that one of the problems in branch prediction is 
getting the target address early in the pipeline (see Appendix C), the Power architects 
decided to make a second use of these registers. Either register can hold a target 
address of a conditional branch. Thus, PowerPC supplements its basic conditional 
branch with two instructions that get the target address from these registers (BCLR, 
BCCTR). Figure D.23 shows the several dozen instructions that have been added; 
note that there is an extensive facility for decimal floating point, as well.

FIGURE D.22  Additional instructions provided in ARMv8, the AArch64 instruction set. Unless noted the 
instruction is available in a word and double word format, if there is a difference. Most of the ALU instructions can optionally set 
the condition codes; these are not included as separate instructions here or in earlier tables.

Instruction 
class Instruction name(s) Function

Data transfer Load/Store Nontemporal pair Loads/store pair of registers with an indication not to cache 
the data. Base + scaled offset addressing mode only. 

ALU Add Extended word/double word Add 2 registers to the left shifting the afsecond register 
operand and extending it.

Add with shift; add immediate with 
shift

Adds with shift of the second operand.

Address of page Computes the address of a page based on PC (similar to 
ADDUIPC, which is the same as ADR in ARMv8)

AND, OR, XOR, XOR NOT shifted 
register

Logical operation on a register and a shifted register.

Bit field clear shifted Shift operand, invert, and AND with another operand

Conditional compare, immediate, 
negative, negative immediate

If condition true, then set condition flags to compare result, 
otherwise leave condition flags untouched. 

Conditional increment, invert, 
negate

If condition then set destination to increment/invert/negate of 
source register

Computes a CRC checksum: byte, word, halfword, doubleCRC

Multiply add, subtract Integer multiply-add or multiply-subtract

Multiply negate Negate the product of two integers; word & double word

Move immediate or inverse Repce 16-bits in a register withla immediate, possibly shifted

Reverse bit order Reverses the order of bits in a register

Signed bit field move Move a signed bit field; sign extend to left; zero extend to right

Unsigned divide, multiple, multiply 
negate, multiply-add, multiply-sub

Unsigned versions of the basic instructions

Control transfer CBNZ, CBZ Compare branch =/!= 0, indicating this is not a call or return.

TBNZ, TBZ Tests bit in a register =/!= 0, and branch.
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FIGURE D.23  Additional instructions provided in Power3. Rotate instructions have two forms: one that sets a condition 
register and one that does not. There are a set of string instructions that load up to 32 bytes from an arbitrary address to a set of registers. 
These instructions will be phased out in future implementations, and hence we just mention them here.

Instruction
class

Instruction name(s) Function

Datatransfer

LHBRX, LWBRX, LDBRX Loads a halfword/word/double word but reverses the by teorder.

SHBRX, SWBRX, SDBRX Stores a halfword/word/double word but reverses the by teorder 

LDQ, STQ Load/store quadword to a register pair.

Generate a random number in a registerDRAN

ALU

CMPB

CMPRB

Compares the individual bytes in a register and sets another 
register byte by byte. 
Compares a byte (x) against two other bytes (yandz) and setsa 
condition to indicate if the value of y<=x<=z. 

CRAND, CRNAND, CROR,
CRNOR, CRXOR, CREQV, 
CORC, CRANDC

Logical operations on the condition register.

ZCMPEQB
Compares a byte (x) against the eight bytes in another register and 
sets a condition to indicate if x = any of the 8 bytes

EXTSWSL Sign extend word and shift left

POPCNTB, POPCNTW
POPCNTD

Count number of 1s in each byte and place total in another byte.
Count number of 1s in each word and place total in another word.
Count number of 1s in a double word.

PRTYD, PRTYW Compute byte parity of the bytes in a word or double word.

BPERMD Permutes the bits in a double word, producing a permuted byte.

CDTBCD, CDCBCD, 
ADDGCS

Instructions to convert from/to binary coded decimal (BCD) or 
operate on two BCD values

Controltransfer

BA, BCA Branches to an absolute address, conditionally & unconditionally 

BCCTR, BCCTRL Conditional branch to address in the count register, w/wolinking

BCTSAR, BCTARL Conditional branch to address in the Branch Target Address 
register, w/wolinking 

CLRBHRB, MFBHRBE Manipulate the branch history rolling buffer.

Floating Point 
Instructions FRSQRTE Computes an estimate of reciprocal of the squareroot,

FTDIV, FTSQRT Tests for divide by zero or square of negative number

Test register against zero and select one of two operands to moveFSEL

Decimal floating point
operations

A series of 48 intructions to support decimal floating point.
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Instructions: Multimedia Extensions of the Desktop/
Server RISCs
Support for multimedia and graphics operations developed in several phases, 
beginning in 1996 with Intel MMX, MIPS MDMX, and SPARC VIS. These extensions 
allowed a register to be treated as multiple independent small integers (8 or 16 bits 
long) with arithmetic and logical operations done in parallel on all the items in 
a register. These initial SIMD extensions, sometimes called packed SIMD, were 
further developed after 2000 by widening the registers, partially or totally separating 
them from the general purpose or floating pointer registers, and by adding support 
for parallel floating point operations. RISC-V has reserved an extension for such 
packed SIMD instructions, but the designers have opted to focus on a true vector 
extension for the present. The vector extension RV64V is a vector architecture, 
and a true vector instruction set is considerably more general, and can typically 
perform the operations handled by the SIMD extensions using vector operations.

Figure D.24 shows the basic structure of the SIMD extensions in ARM, MIPS, 
Power, and SPARC. Note the difference in how the SIMD “vector registers” are 
structured: repurposing the floating point, extending the floating point, or adding 
additional registers. Other key differences include support for FP as well as integers, 
support for 128-bit integers, and provisions for immediate fields as operands in 
integer and logical operations. Standard load and store instructions are used for 
moving data from the SIMD registers to memory with special extensions to handle 
moving less than a full SIMD register. SPARC VIS, which was one of the earliest 
ISA extensions for graphics, is much more limited: only add, subtract, and multiply 

FIGURE D.24  Structure of the SIMD extensions intended for multimedia support. In addition to the vector facility, The 
last row states whether the SIMD instruction set supports immediates (e.g, add vector immediate or AND vector immediate); the entry 
states the size of immediates for those ISAs that support them. Note that the fact that an immediate is present is encoded in the opcode 
space, and could alternatively be added to the next table as additional instructions. Power 3 has an optional Vector-Scalar Extension. The 
Vector-Scalar Extension defines a set of vector registers that overlap the FP and normal vector registers, eliminating the need to move 
data back and forth to the vector registers. It also supports double precision floating point operations.

ARMv8 MIPS64 R6 Power v3.0 SPARCv9

VIS

1995

32 x 64 bits

Same as FP registers

8,16, 32

Advanced SIMD

2011

32 x 128 bits

extend FP registers 
doubling width

8, 16, 32, 64

32, 64

Vector Facility

2015

32 x 128 bits

Independent 

8, 16, 32, 64, 128

32

Name of ISA extension

Date of Current Version

Vector registers: # x size

Use GP/FP registers or 
independent set

Integer data sizes

FP data sizes

Immediates for integer and 
logical operations

MIPS64 SIMD 
Architecture

2012

32 x 128 bits

extend FP registers 
doubling width

8, 16, 32, 64

32, 64

5 bits arithmetic
8 bits logical
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are included, there is no FP support, and only limited instructions for bit element 
operations; we include it in Figure D.24 but will not be going into more detail.

Figure D.25 shows the arithmetic instructions included in these SIMD 
extensions; only those appearing in at least two extensions are included. MIPS 
SIMD includes many other instructions, as does the Power 3 Vector-Scalar 
extension, which we do not cover. One frequent feature not generally found in 
generalpurpose microprocessors is saturating operations. Saturation means that 
when a calculation overflows the result is set to the largest positive number or 
most negative number, rather than a modulo calculation as in two’s complement 
arithmetic. Commonly found in digital signal processors (see the next subsection), 
these saturating operations are helpful in routines for filtering. Another common 
extension are instructions for accumulating values within a single register; the dot 
product instruction an the maximum/minimum instructions are typical examples.

In addition to the arithmetic instructions, the most common additions are 
logical and bitwise operations and instructions for doing version of permutations 
and packing elements into the SIMD registers. These additions are summarized 
in Figure D.26, Lastly, all three extensions support SIMD FP operations, as 
summarized in Figure D.27.

FIGURE D.25  Summary of arithmetic SIMD instructions. B stands for byte (8 bits), H for half word (16 bits), and W for word 
(32 bits), D for double word (64 bits), and Q for quad word (128 bits). Thus, 8B means an operation on 8 bytes in a single instruction. 
Note that some instructions—such as adjacent add/subtract, or multiply—produce results that are twice the width of the inputs (e.g. 
multiply on 16 bytes produces 8 halfword results). Dot product is a multiply and accumulate. The SPARC VIS instructions are aimed 
primarily at graphics and are structured accordingly.

Instruction category ARM Advanced SIMD MIPS SIMD Power Vector Facility

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W

16B, 8H, 4W

16B, 8H, 4W

16B, 8H, 4W

16B, 8H, 4W

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

Adjacent add & subtract (pairwise) 

Dot product add, dot product subtract

Modulo,signed&unsigned

Compareequal

Add/subtract

Saturating add/sub

Absolute value of difference

Average

Divide: signed, unsigned

Multiply: signed, unsigned

Multiply add, multiply subtract

Maximum, signed & unsigned

Minimum, signed & unsigned

Compare <, <=, signed, unsigned 16B, 8H, 4W; 2 D

16B, 8H; 4W; 2 D

16B, 8H; 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W

16B, 8H, 4W; 2 D

16B, 8H, 4W

16B, 8H, 4W; 2 D

16B, 8H, 4W

16B, 8H, 4W

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W, 2 D, Q

16B, 8H, 4W, 2 D, Q

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D; Q

16B, 8H, 4W; 2 D; Q
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Instructions: Digital Signal-Processing Extensions of the 
Embedded RISCs
Both Thumb2 and microMIPS32 provide instructions for DSP (Digital Signal 
Processing) and multimedia operations. In Thumb2, these are part of the core 
instruction set; in microMIPS32, they are part of the DSP extension. These 
extensions, which are encoded as 32-bit instructions, are less extensive than the 
multimedia and graphics support provided in the SIMD/Vector extensions of 
MIPS64 or ARMv8 (AArch64). Like those more comprehensive extensions, the 
ones in Thumb2 and microMIPS32 also rely on packed SIMD, but they use the 
existing integer registers, with a small extension to allow a wide accumulator, and 
only operate on integer data. RISC-V has specified that the “P” extension will 
support packed integer SIMD using the floating point registers, but at the time of 
publication, the specification was not completed.

FIGURE D.26  Summary of logical, bitwise, permute, and pack/unpack instructions, using the same format as the 
previous figure. When there is a single operand the instruction applies to the entire register; for logical operations there is no difference. 
Interleave puts together the elements (all even, odd, leftmost or rightmost) from two different registers to create one value; it can be used 
for unpacking. Pack moves the even or odd elements from two different registers to the leftmost and rightmost halves of the result. Shuffle 
creates a from two registers based on a mask that selects which source for each item. SPLAT copies a value into each item in a register.

Instruction category ARM Advanced SIMD  MIPS SIMD Power Vector Facility

Shift right/left, logical, arithmetic 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q 16B, 8H, 4W; 2 D; Q

Count leading or trailing zeros 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

QQQand/or/xor

16B, 8H, 4W; 2 DPopulation count 16B, 8H, 4W; 2 D; Q

6B, 8H, 4W; 2 D16B, 8H, 4W; 2 DInterleave even/odd, left/right

6B, 8H, 4W; 2 D16B, 8H, 4W; 2 DPack even/odd

16B, 8H, 4W; 2 D16B, 8H, 4W; 2 DShuffle

16B, 8H, 4W; 2 D16B, 8H, 4W; 2 DSPLAT

Bit insert & extract 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D;Q

FIGURE D.27  Summary of floating point, using the same format as the previous figure.

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

4W,2D

FP add, subtract, multiply, divide

FP multiply add/subtract

FP maximum/minimum

FP SQRT and 1/SQRT

FP Compare

FP Convert to/from integer

Instuction category ARM Advanced SIMD MIPS SIMD Power Vectory Facility
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DSP operations often include linear algebra functions and operations such as 
convolutions; these operations produce intermediate results that will be larger 
than the inputs. In Thumb2, this is handled by a set of operations that produce 
64-bit results using a pair of integer registers. In microMIPS32 DSP, there are 4 64-
bit accumulator registers, including the Hi-Lo register, which is already exists for 
doing integer multiply and divide. Both architectures provide parallel arithmetic 
using bytes, halfwords, and words, as in the multimedia extensions in ARMv8 and 
MIPS64. In addition, the MIPS DSP extension handles fractional data, such data 
is heavily used in DSP operations. Fractional data items have a sign bit and the 
remaining bits are used to represent the fraction, providing a range of values from 
-1.0 to 0.9999 (in decimal). MIPS DSP supports two fractional data sizes Q15 and 
Q31 each with one sign bit and 15 or 31 bits of fraction.

Figure D.28 shows the common operations using the same notation as was used 
in Figure D.25. Remember that the basic 32-bit instruction set provides additional 
functionality, including basic arithmetic, logical, and bit manipulation.

FIGURE D.28  Summary of two embedded RISC DSP operations, showing the data types for each operation. A 
blank indicates that the operation is not supported as a single instruction. Byte quantities are usually unsigned. Complex multiplication 
step implements multiplication of complex numbers where each component is a Q15 value. ARM uses its standard condition register, 
while MIPS adds a set of condition bits as part of the state in the DSP extension.

4B,2H

microMIPS32DSPThumb-2Function

4B, 2Q15Add/Subtract

4B, 2Q15, Q314B,2HAdd/Subtract with saturation

Add/Subtract with Exchange (exchanges halfwords in rt, then adds first 
halfword and subtracts second) with optional saturation

2H

4BReduce by add (sum the values)

2Q15, Q31Absolute value

Precision reduce/increase (reduces or increases the precision of a value)

4B, 2HShifts: left, right, logical, and arithmetic, with optional saturation

2B, 2H, 2Q152HMultiply

Multiply add/subtract (to GPR or accumulator register in MIPS)

Complex multiplication step (2 multiplies and addition/subtraction)

Multiply and accumulate (by addition or subtraction)

B, HReplicate bits

Compare: =, <, <=, sets condition field 4B, 2H

Pick (use condition bits to choose bytes or halfwords from two operands)

HPack choosing a halfword from each operand

Extract Q63

Move from/to accumulator DW

2Q15

2Q15

Q15, Q31

2H

2H

4B, 2H

2B, Q15, 2Q15, Q31
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Concluding Remarks
This survey covers the addressing modes, instruction formats, and almost all the 
instructions found in 8 RISC architectures. Although the later sections concentrate 
on the differences, it would not be possible to cover 8 architectures in these few 
pages if there were not so many similarities. In fact, we would guess that more than 
90% of the instructions executed for any of these architectures would be found 
in Figures D.9 through D.13. To contrast this homogeneity, Figure D.29 gives a 
summary for four architectures from the 1970s in a format similar to that shown 
in Figure D.1. (Since it would be impossible to write a single section in this style 
for those architectures, the next three sections cover the 80×86, VAX, and IBM 
360/370.) In the history of computing, there has never been such widespread 
agreement on computer architecture as there has been since the RISC ideas 
emerged in the 1980s.

	 D.3	 The Intel 80×86

Introduction
MIPS was the vision of a single architect. The pieces of this architecture fit nicely 
together and the whole architecture can be described succinctly. Such is not the 

FIGURE D.29  Summary of four 1970s architectures. Unlike the architectures in Figure D.1, there is little agreement between 
these architectures in any category. (See Section D.3 for more details on the 80×86 and Section D.4 for a description of the VAX.)

IBM360/370 Intel 8086 Motorola68000 DECVAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s)(bits) 16,32,48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, ... , 
432

Addressing (size, model) 24bits, flat/
31bits, flat

4 + 16 bits, 
segmented

24 bits, flat

Data aligned? Yes 360/No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 =14

Protection Page None Optional Page

Page size 2 KB & 4KB — 0.25 to 32 KB 0.5 KB

Memory mappedMemory mappedOpcodeOpcodeI/O

Integer registers (size, model,
number)

16 GPR ×32 bits 8 dedicated 
data × 16 bits

8 data and 8 address
× 32 bits

15 GPR × 32 bits

Separate floating-point 
registers

4 ×64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating
hexadecimal)

IEEE 754 single, 
double, extended

IEEE 754 single, 
double, extended

DEC 

32 bits, flat
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case of the 80 × 86: It is the product of several independent groups who evolved 
the architecture over 20 years, adding new features to the original instruction set 
as you might add clothing to a packed bag. Here are important 80 × 86 milestones:

■	 1978—The Intel 8086 architecture was announced as an assembly 
language–compatible extension of the then-successful Intel 8080, an 8-bit 
microprocessor. The 8086 is a 16-bit architecture, with all internal registers 
16 bits wide. Whereas the 8080 was a straightforward accumulator machine, 
the 8086 extended the architecture with additional registers. Because nearly 
every register has a dedicated use, the 8086 falls somewhere between an 
accumulator machine and a general-purpose register machine, and can fairly 
be called an extended accumulator machine.

■	 1980—The Intel 8087 floating-point coprocessor is announced. This architecture 
extends the 8086 with about 60 floating-point instructions. Its architects 
rejected extended accumulators to go with a hybrid of stacks and registers, 
essentially an extended stack architecture: A complete stack instruction set is 
supplemented by a limited set of register-memory instructions.

■	 1982—The 80286 extended the 8086 architecture by increasing the address 
space to 24 bits, by creating an elaborate memory mapping and protection 
model, and by adding a few instructions to round out the instruction set and 
to manipulate the protection model. Because it was important to run 8086 
programs without change, the 80286 offered a real addressing mode to make 
the machine look just like an 8086.

■	 1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a 32-
bit architecture with 32-bit registers and a 32-bit address space, the 80386 added 
new addressing modes and additional operations. The added instructions make 
the 80386 nearly a general-purpose register machine. The 80386 also added 
paging support in addition to segmented addressing. Like the 80286, the 80386 
has a mode to execute 8086 programs without change.

This history illustrates the impact of the “golden handcuffs” of compatibility on the 
80 × 86, as the existing software base at each step was too important to jeopardize 
with significant architectural changes. Fortunately, the subsequent 80486 in 1989, 
Pentium in 1992, and P6 in 1995 were aimed at higher performance, with only 
four instructions added to the user-visible instruction set: three to help with 
multiprocessing plus a conditional move instruction.

Since 1997 Intel has added hundreds of instructions to support multimedia 
by operating on many narrower data types within a single clock (see Appendix 
A). These SIMD or vector instructions are primarily used in hand-coded libraries 
or drivers and rarely generated by compilers. The first extension, called MMX, 
appeared in 1997. It consists of 57 instructions that pack and unpack multiple 
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs shift, 
logical, and integer arithmetic on the narrow data items in parallel. It supports both 
saturating and nonsaturating arithmetic. MMX uses the registers comprising the 
floating-point stack and hence there is no new state for operating systems to save.
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In 1999 Intel added another 70 instructions, labeled SSE, as part of Pentium III. 
The primary changes were to add eight separate registers, double their width to 128 
bits, and add a single-precision floating-point data type. Hence, four 32-bit floating-
point operations can be performed in parallel. To improve memory performance, 
SSE included cache prefetch instructions plus streaming store instructions that 
bypass the caches and write directly to memory.

In 2001, Intel added yet another 144 instructions, this time labeled SSE2. 
The new data type is double-precision arithmetic, which allows pairs of 64-
bit floating-point operations in parallel. Almost all of these 144 instructions 
are versions of existing MMX and SSE instructions that operate on 64 bits of 
data in parallel. Not only does this change enable multimedia operations, but it 
also gives the compiler a different target for floating-point operations than the 
unique stack architecture. Compilers can choose to use the eight SSE registers 
as floating-point registers as found in the RISC machines. This change has 
boosted performance on the Pentium 4, the first microprocessor to include 
SSE2 instructions. At the time of announcement, a 1.5 GHz Pentium 4 was 1.24 
times faster than a 1 GHz Pentium III for SPECint2000(base), but it was 1.88 
times faster for SPECfp2000(base).

In 2003 a company other than Intel enhanced the IA-32 architecture this 
time. AMD announced a set of architectural extensions to increase the address 
space for 32 to 64 bits. Similar to the transition from 16- to 32-bit address space 
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases 
the number of registers to sixteen and has 16 128-bit registers to support XMM, 
AMD’s answer to SSE2. Rather than expand the instruction set, the primary 
change is adding a new mode called long mode that redefines the execution of 
all IA-32 instructions with 64-bit addresses. To address the larger number of 
registers, it adds a new prefix to instructions. AMD64 still has a 32-bit mode 
that is backward compatible to the standard Intel instruction set, allowing 
a more graceful transition to 64-bit addressing than the HP/Intel Itanium. 
Intel later followed AMD’s lead, making almost identical changes so that 
most software can run on either 64-bit address version of the 80×86 without  
change.

Whatever the artistic failures of the 80 × 86, keep in mind that there are more 
instances of this architectural family than of any other server or desktop processor 
in the world. Nevertheless, its checkered ancestry has led to an architecture that is 
difficult to explain and impossible to love.

We start our explanation with the registers and addressing modes, move on to 
the integer operations, then cover the floating-point operations, and conclude with 
an examination of instruction encoding.

80×86 Registers and Data Addressing Modes
The evolution of the instruction set can be seen in the registers of the 80 × 86 
(Figure D.30). Original registers are shown in black type, with the extensions of the 
80386 shown in a lighter shade, a coloring scheme followed in subsequent figures. 
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FIGURE D.30  The 80×86 has evolved over time, and so has its register set. The original set is shown in black and 
the extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit register or as 
two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could also be used as general-purpose 
registers. The floating-point registers on the bottom are 80 bits wide, and although they look like regular registers they are not. They 
implement a stack, with the top of stack pointed to by the status register. One operand must be the top of stack, and the other can be 
any of the other seven registers below the top of stack.

FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack  segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium
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The 80386 basically extended all 16-bit registers (except the segment registers) to 
32 bits, prefixing an “E” to their name to indicate the 32-bit version. The arithmetic, 
logical, and data transfer instructions are two-operand instructions that allow the 
combinations shown in Figure D.31.

To explain the addressing modes, we need to keep in mind whether we are 
talking about the 16-bit mode used by both the 8086 and 80286 or the 32-bit mode 
available on the 80386 and its successors. The seven data memory addressing 
modes supported are

■	 Absolute

■	 Register indirect

■	 Based

■	 Indexed

■	 Based indexed with displacement

■	 Based with scaled indexed

■	 Based with scaled indexed and displacement

Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit 
mode. If we count the size of the address as a separate addressing mode, the total 
is 11 addressing modes.

Although a memory operand can use any addressing mode, there are restrictions 
on what registers can be used in a mode. The section “80×86 Instruction Encoding” 
on page K-11 gives the full set of restrictions on registers, but the following 
description of addressing modes gives the basic register options:

■	 Absolute—With 16-bit or 32-bit displacement, depending on the mode.

■	 Register indirect—BX, SI, DI in 16-bit mode and EAX, ECX, EDX, EBX, 
ESI, and EDI in 32-bit mode.

FIGURE D.31  Instruction types for the arithmetic, logical, and data transfer instructions. 
The 80×86 allows the combinations shown. The only restriction is the absence of a memory-memory mode. 
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure D.30 
(not IP or FLAGS).

Source/destination operand type Second source operand

Register

Immediate

Memory

Register

Immediate

Register

Register

Register

Memory

Memory
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■	 Based mode with 8-bit or 16-bit/32-bit displacement—BP, BX, SI, and DI 
in 16-bit mode and EAX, ECX, EDX, EBX, ESI, and EDI in 32-bit mode. 
The displacement is either 8 bits or the size of the address mode: 16 or 32 bits. 
(Intel gives two different names to this single addressing mode, based and 
indexed, but they are essentially identical and we combine them. This book 
uses indexed addressing to mean something different, explained next.)

■	 Indexed—The address is the sum of two registers. The allowable combinations 
are BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called based indexed 
on the 8086. (The 32-bit mode uses a different addressing mode to get the 
same effect.)

■	 Based indexed with 8- or 16-bit displacement—The address is the sum of 
displacement and contents of two registers. The same restrictions on registers 
apply as in indexed mode.

■	 Base plus scaled indexed—This addressing mode and the next were added in 
the 80386 and are only available in 32-bit mode. The address calculation is

Base register +2Scale × Index × register,

where Scale has the value 0, 1, 2, or 3; Index register can be any of the eight 32-bit 
general registers except ESP; and Base register can be any of the eight 32-bit general 
registers.

■	 Base plus scaled index with 8- or 32-bit displacement—The address is the 
sum of the displacement and the address calculated by the scaled mode 
immediately above. The same restrictions on registers apply.

The 80×86 uses Little Endian addressing.
Figure D.32 shows the memory mapping options on the generations of 80 × 86  

machines.
The assembly language programmer clearly must specify which segment 

register should be used with an address, no matter which address mode is used. 
To save space in the instructions, segment registers are selected automatically 
depending on which address register is used. The rules are simple: References to 
instructions (IP) use the code segment register (CS), references to the stack (BP 
or SP) use the stack segment register (SS), and the default segment register for the 
other registers is the data segment register (DS). The next section explains how 
they can be overridden.

80×86 Integer Operations
The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data 
types. The data type distinctions apply to register operations as well as memory 
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost 
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every operation works on both 8-bit data and one longer data size. That size is 
determined by the mode and is either 16 or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the 80×86 
architects provide a convenient way to specify each version without expanding 
code size significantly. They decided that most programs would be dominated by 
either 16- or 32-bit data, and so it made sense to be able to set a default large size. 
This default size is set by a bit in the code segment register. To override the default 
size, an 8-bit prefix is attached to the instruction to tell the machine to use the other 
large size for this instruction.

FIGURE D.32  The original segmented scheme of the 8086 is shown on the left. All 80×86 processors support this style of 
addressing, called real mode. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it to the 16-bit offset, forming 
a 20-bit physical address. The 80286 (center) used the contents of the segment register to select a segment descriptor, which includes 
a 24-bit base address among other items. It is added to the 16-bit offset to form the 24-bit physical address. The 80386 and successors 
(right) expand this base address in the segment descriptor to 32 bits and also add an optional paging layer below segmentation. A 32-bit 
linear address is first formed from the segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset. 
The first 10-bit field selects the entry in the first-level page table, and then this entry is used in combination with the second 10-bit field 
to access the second-level page table to select the upper 20 bits of the physical address. Prepending this 20-bit address to the final 12-bit 
field gives the 32-bit physical address. Paging can be turned off, redefining the 32-bit linear address as the physical address. Note that a 
“flat” 80×86 address space comes simply by loading the same value in all the segment registers; that is, it doesn’t matter which segment 
register is selected.
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The prefix solution was borrowed from the 8086, which allows multiple prefixes 
to modify instruction behavior. The three original prefixes override the default 
segment register, lock the bus so as to perform a semaphore, or repeat the following 
instruction until CX counts down to zero. This last prefix was intended to be paired 
with a byte move instruction to move a variable number of bytes. The 80386 also 
added a prefix to override the default address size.

The 80 × 86 integer operations can be divided into four major classes:

1.	 Data movement instructions, including move, push, and pop

2.	 Arithmetic and logic instructions, including logical operations, test, shifts, 
and integer and decimal arithmetic operations

3.	 Control flow, including conditional branches and unconditional jumps, 
calls, and returns

4.	 String instructions, including string move and string compare

Figure D.33 shows some typical 80 × 86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except 

that the arithmetic and logic instruction operations allow the destination to be 
either a register or a memory location.

Control flow instructions must be able to address destinations in another 
segment. This is handled by having two types of control flow instructions: “near” 
for intrasegment (within a segment) and “far” for intersegment (between segments) 
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow 
the opcode in 16-bit mode. One of these is used as the instruction pointer, while 

FIGURE D.33  Some typical 80×86 instructions and their functions. A list of frequent operations 
appears in Figure D.34. We use the abbreviation SR:X to indicate the formation of an address with segment 
register SR and offset X. This effective address corresponding to SR:X is (SR<<4)+X. The CALLF saves the 
IP of the next instruction and the current CS on the stack.

noitcnuFnoitcurtsnI

JE name

JMP name IP name

CALLF name, seg SP SP–2;M[SS:SP] IP+5;SP SP–2;

PUSH SI SP SP–2;M[SS:SP] SI

POP DI DI M[SS:SP];SP SP+2

ADD AX,#6765 AX AX+6765

SHL BX,1 BX BX1..15## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI] 8M[DS:SI];DI DI+1;SI SI+1

MOVW BX,[DI+45] BX 16M[DS:DI+45]

M[SS:SP]  CS;IP name;CS seg; 

if equal(CC) {IP name};IP–128 name IP+128
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the other is loaded into CS and becomes the new code segment. In 32bit mode the 
first field is expanded to 32 bits to match the 32-bit program counter (EIP).

Calls and returns work similarly—a far call pushes the return instruction pointer 
and return segment on the stack and loads both the instruction pointer and the code 
segment. A far return pops both the instruction pointer and the code segment from the 
stack. Programmers or compiler writers must be sure to always use the same type of call 
and return for a procedure—a near return does not work with a far call, and vice versa.

String instructions are part of the 8080 ancestry of the 80 × 86 and are not 
commonly executed in most programs.

Figure D.34 lists some of the integer 80 × 86 instructions. Many of the 
instructions are available in both byte and word formats.

80×86 Floating-Point Operations
Intel provided a stack architecture with its floating-point instructions: loads push 
numbers onto the stack, operations find operands in the top two elements of the 
stacks, and stores can pop elements off the stack.

Intel supplemented this stack architecture with instructions and addressing 
modes that allow the architecture to have some of the benefits of a register-memory 
model. In addition to finding operands in the top two elements of the stack, one 
operand can be in memory or in one of the seven registers below the top of the stack.

This hybrid is still a restricted register-memory model, however, in that loads 
always move data to the top of the stack while incrementing the top of stack pointer 
and stores can only move the top of stack to memory. Intel uses the notation ST to 
indicate the top of stack, and ST(i)to represent the ith register below the top of 
stack.

One novel feature of this architecture is that the operands are wider in the register 
stack than they are stored in memory, and all operations are performed at this 
wide internal precision. Numbers are automatically converted to the internal 80-bit 
format on a load and converted back to the appropriate size on a store. Memory 
data can be 32-bit (single-precision) or 64-bit (double-precision) floating-point 
numbers, called real by Intel. The register-memory version of these instructions will 
then convert the memory operand to this Intel 80-bit format before performing the 
operation. The data transfer instructions also will automatically convert 16- and 
32-bit integers to reals, and vice versa, for integer loads and stores.

The 80 × 86 floating-point operations can be divided into four major classes:

1.	 Data movement instructions, including load, load constant, and store

2.	 Arithmetic instructions, including add, subtract, multiply, divide, square 
root, and absolute value

3.	 Comparison, including instructions to send the result to the integer CPU so 
that it can branch

4.	 Transcendental instructions, including sine, cosine, log, and exponentiation
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Figure D.35 shows some of the 60 floating-point operations. We use the curly 
brackets {} to show optional variations of the basic operations: {I} means there 
is an integer version of the instruction, {P} means this variation will pop one 
operand off the stack after the operation, and {R} means reverse the sense of the 
operands in this operation.

FIGURE D.34  Some typical operations on the 80 × 86. Many operations use register-memory format, 
where either the source or the destination may be memory and the other may be a register or immediate operand.

MeaningInstruction

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ) and JE (for JZ) are alternative names

JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near) and intersegment (far) versions

CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions

RET, RETF Pops return address from stack and jumps to it; near and far versions

LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ¦ 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH Push source operand on stack

POP Pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic/logical Arithmetic and logical operations using the data registers and memory

ADD Add source to destination; register-memory format

SUB Subtract source from destination; register-memory format

CMP Compare source and destination; register-memory format

SHL Shift left

SHR Shift logical right

RCR Rotate right with carry as fill

CBW Convert byte in AL to word in AX

TEST Logical AND of source and destination sets flags

INC Increment destination; register-memory format

DEC Decrement destination; register-memory format

OR Logical OR; register-memory format

XOR Exclusive OR; register-memory format

String instructions Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination; may be repeated

LODS Loads a byte or word of a string into the A register
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Not all combinations are provided. Hence,

F{I}SUB{R}{P}

represents these instructions found in the 80 × 86:

FSUB

FISUB

FSUBR

FISUBR

FSUBP

FSUBRP

There are no pop or reverse pop versions of the integer subtract instructions.
Note that we get even more combinations when including the operand modes 

for these operations. The floating-point add has these options, ignoring the integer 
and pop versions of the instruction:

FADD Both operands are in the in stack, and the result replaces the top 
of stack.

FADD ST(i) One source operand is ith register below the top of stack, and the 
result replaces the top of stack.

FADD ST(i),ST One source operand is the top of stack, and the result replaces ith 
register below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory, and the 
result replaces the top of stack.

FADD mem64 One source operand is a 64-bit location in memory, and the 
result replaces the top of stack.

As mentioned earlier SSE2 presents a model of IEEE floating-point registers.

FIGURE D.35  The floating-point instructions of the 80×86. The first column shows the data transfer instructions, which move data 
to memory or to one of the registers below the top of the stack. The last three operations push constants on the stack: pi, 1.0, and 0.0. The second 
column contains the arithmetic operations described above. Note that the last three operate only on the top of stack. The third column is the 
compare instructions. Since there are no special floating-point branch instructions, the result of the compare must be transferred to the integer 
CPU via the FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition codes. The 
floating-point comparison can then be tested using integer branch instructions. The final column gives the higher-level floating-point operations.

CompareArithmeticDatatransfer Transcendental

F{I}LD mem/ST(i) F{I}ADD{P}mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P}mem/ST(i) F{I}UCOM{P}{P} F2XM1

FCOSFSTSW AX/memF{I}MUL{P}mem/ST(i)FLDPI

FPTANF{I}DIV{R}{P}mem/ST(i) FLD1

FPREMFSQRTFLDZ

FSINFABS

FYL2XFRNDINT
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80 × 86 Instruction Encoding
Saving the worst for last, the encoding of instructions in the 80×86 is complex, 
with many different instruction formats. Instructions may vary from 1 byte, when 
there are no operands, to up to 6 bytes, when the instruction contains a 16-bit 
immediate and uses 16-bit displacement addressing. Prefix instructions increase 
8086 instruction length beyond the obvious sizes.

The 80386 additions expand the instruction size even further, as Figure D.36 shows. 
Both the displacement and immediate fields can be 32 bits long, two more prefixes 
are possible, the opcode can be 16 bits long, and the scaled index mode specifier adds 
another 8 bits. The maximum possible 80386 instruction is 17 bytes long.

Figure D.37 shows the instruction format for several of the example instructions in 
Figure D.33. The opcode byte usually contains a bit saying whether the operand is a 
byte wide or the larger size, 16 bits or 32 bits depending on the mode. For mode and 
the register; this is true in many instructions that have the form register register 
op immediate. Other instructions use a “postbyte” or extra opcode byte, labeled 
“mod, reg, r/m” in Figure D.36, which contains the addressing mode information. 
This postbyte is used for many of the instructions that address memory. The based 
with scaled index uses a second postbyte, labeled “sc, index, base” in Figure D.36.

The floating-point instructions are encoded in the escape opcode of the 8086 and 
the post byte address specifier. The memory operations reserve 2 bits to decide whether 
the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those same 2 bits are used 

FIGURE D.36  The instruction format of the 8086 (black type) and the extensions for the 
80386 (shaded type). Every field is optional except the opcode.
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in versions that do not access memory to decide whether the stack should be popped 
after the operation and whether the top of stack or a lower register should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of the 
addressing modes in the 80 × 86. Hence, Figures D.38 and D.39 show the encoding 
of the two postbyte address specifiers for both the 16- and 32-bit modes.

Putting It All Together: Measurements of Instruction Set Usage
In this section, we present detailed measurements for the 80 × 86 and then compare 
the measurements to MIPS for the same programs. To facilitate comparisons among 
dynamic instruction set measurements, we use a subset of the SPEC92 programs. 

FIGURE D.37  Typical 8086 instruction formats. The encoding of the postbyte is shown in Figure 
D.38. Many instructions contain the 1-bit field w, which says whether the operation is a byte or a word. 
Fields of the form v/w or d/w are a d-field or v-field followed by the w-field. The d-field in MOV is used in 
instructions that may move to or from memory and shows the direction of the move. The field v in the SHL 
instruction indicates a variable-length shift; variable-length shifts use a register to hold the shift count. The 
ADD instruction shows a typical optimized short encoding usable only when the first operand is AX. Overall 
instructions may vary from 1 to 6 bytes in length.

JE

a.  JE PC + displacement

Segment numberCALLF Offset

b.  CALLF

c.  MOV  BX, [DI + 45]

PUSH

d.  PUSH SI

ADD w

e.  ADD AX, #6765

SHL
r-r

postbytev/w

f.  SHL BX, 1

g.  TEST DX, #42

Reg

4 4 8

6 8 8

16168

2

5 3

4 1 163

Constant

6 2 8

7 1 8 8

Condition Displacement

Displacementd/wMOV
r-m

postbyte

TEST Postbyte Immediatew
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The 80 × 86 results were taken in 1994 using the Sun Solaris FORTRAN and C 
compilers V2.0 and executed in 32-bit mode. These compilers were comparable in 
quality to the compilers used for MIPS.

Remember that these measurements depend on the benchmarks chosen and the 
compiler technology used. Although we feel that the measurements in this section 
are reasonably indicative of the usage of these architectures, other programs may 
behave differently from any of the benchmarks here, and different compilers may 
yield different results. In doing a real instruction set study, the architect would want 
to have a much larger set of benchmarks, spanning as wide an application range 
as possible, and consider the operating system and its usage of the instruction set. 
Single-user benchmarks like those measured here do not necessarily behave in the 
same fashion as the operating system.

We start with an evaluation of the features of the 80 × 86 in isolation, and later 
compare instruction counts with those of DLX.

Measurements of 80×86 Operand Addressing

We start with addressing modes. Figure D.40 shows the distribution of the operand 
types in the 80 × 86. These measurements cover the “second” operand of the 
operation; for example,

mov EAX, [45]

FIGURE D.38  The encoding of the first address specifier of the 80×86, mod, reg, r/m. The first four columns show the encoding 
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16- or 32- bit mode. The remaining columns 
explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the address size. Basically, the 
registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement 
and mod = 2 adding a 16- or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or mod = 2 in 
16-bit mode selects BP plus the displacement; r/m = 5 when mod =1 or mod = 2 in 32-bit mode selects EBP plus displacement; and r/m = 
4 in 32-bit mode when mod ¦3 (sib) means use the scaled index mode shown in Figure D.39. When mod = 3, the r/m field indicates a register, 
using the same encoding as the reg field combined with the w bit.
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counts as a single memory operand. If the types of the first operand were counted, 
the percentage of register usage would increase by about a factor of 1.5.

The 80 × 86 memory operands are divided into their respective addressing modes 
in Figure D.41. Probably the biggest surprise is the popularity of the addressing 
modes added by the 80386, the last four rows of the figure. They account for 
about half of all the memory accesses. Another surprise is the popularity of direct 
addressing. On most other machines, the equivalent of the direct addressing mode 
is rare. Perhaps the segmented address space of the 80 × 86 makes direct addressing 
more useful, since the address is relative to a base address from the segment register.

These addressing modes largely determine the size of the Intel instructions. 
Figure D.42 shows the distribution of instruction sizes. The average number of 
bytes per instruction for integer programs is 2.8, with a standard deviation of 
1.5, and 4.1 with a standard deviation of 1.9 for floating-point programs. The 
difference in length arises partly from the differences in the addressing modes: 
Integer programs rely more on the shorter register indirect and 8-bit displacement 

FIGURE D.39  Based plus scaled index mode address specifier found in the 80386. This 
mode is indicated by the (sib) notation in Figure D.38. Note that this mode expands the list of registers to be 
used in other modes: Register indirect using ESP comes from Scale = 0, Index = 4, and Base = 4, and base 
displacement with EBP comes from Scale = 0, Index = 5, and mod = 0. The two-bit scale field is used in this 
formula of the effective address: Base register + 2scale Index register.

BaseIndex

EA  XE A X0

ECXECX1

EDXEDX2

EBXEBX3

ESPNo index4

If mod =           0, disp 32EBP5
If mod ¦ 0, EBP

ESIESI6

EDIEDI7

FIGURE D.40  Operand type distribution for the average of five SPECint92 programs 
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs (doduc, 
ear, hydro2d, mdljdp2, su2cor).

Integer average FP average

45%Register

16%Immediate

22%

6%

72%39%Memory
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FIGURE D.41  Operand addressing mode distribution by program. This chart does not include 
addressing modes used by branches or control instructions.

Addressing mode Integer average FP average

Register indirect

Base + 8-bit disp.

Base + 32-bit disp.

Indexed

Based indexed + 8-bit disp.

Based indexed + 32-bit disp.

Base + scaled indexed

Base + scaled indexed + 8-bit disp.

Base + scaled indexed + 32-bit disp.
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FIGURE D.42  Averages of the histograms of 80 × 86 instruction lengths for five SPECint92 
programs and for five SPECfp92 programs, all running in 32-bit mode.
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addressing modes, while floating-point programs more frequently use the 80386 
addressing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and 
registers, how are they used? Figure D.43 shows that, at least for the compilers used 
in this measurement, the stack model of execution is rarely followed.

Finally, Figures D.44 and D.45 show the instruction mixes for 10 SPEC92 
programs.

Comparative Operation Measurements

Figures D.46 and D.47 show the number of instructions executed for each of the 10 
programs on the 80 × 86 and the ratio of instruction execution compared with that 
for DLX: Numbers less than 1.0 mean that the 80 × 86 executes fewer instructions 
than DLX. The instruction count is surprisingly close to DLX for many integer 
programs, as you would expect a load-store instruction set architecture like DLX to 
execute more instructions than a register-memory architecture like the 80x86. The 
floating-point programs always have higher counts for the 80 × 86, presumably due 
to the lack of floating-point registers and the use of a stack architecture.

Another question is the total amount of data traffic for the 80 × 86 versus DLX, 
since the 80 × 86 can specify memory operands as part of operations while DLX 
can only access via loads and stores. Figures D.46 and D.47 also show the data reads, 
data writes, and data read-modify-writes for these 10 programs. The total accesses 
ratio to DLX of each memory access type is shown in the bottom rows, with the 
read-modify-write counting as one read and one write. The 80 × 86 performs about 
two to four times as many data accesses as DLX for floating-point programs, and 
1.25 times as many for integer programs. Finally, Figure D.48 shows the percentage 
of instructions in each category for 80 × 86 and DLX.

Concluding Remarks
Beauty is in the eye of the beholder.

Old Adage

As we have seen, orthogonal is not a term found in the Intel architectural 
dictionary. To fully understand which registers and which addressing modes are 

FIGURE D.43  The percentage of instructions for the floating-point operations (add, sub, mul, div) 
that use each of the three options for specifying a floating-point operand on the 80 × 86. The three 
options are (1) the strict stack model of implicit operands on the stack, (2) register version naming an explicit operand 
that is not one of the top two elements of the stack, and (3) memory operand.

doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1))

Register (2nd operand ST(i), i > 1)

1.1% 0.0% 0.0% 0.2% 0.6% 0.4%

17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

73.1%68.7%92.7%85.8%36.6%81.6%Memory

Option
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available, you need to see the encoding of all addressing modes and sometimes the 
encoding of the instructions.

Some argue that the inelegance of the 80×86 instruction set is unavoidable, 
the price that must be paid for rampant success by any architecture. We reject 
that notion. Obviously, no successful architecture can jettison features that were 
added in previous implementations, and over time some features may be seen 
as undesirable. The awkwardness of the 80×86 began at its core with the 8086 
instruction set and was exacerbated by the architecturally inconsistent expansions 
of the 8087, 80286, and 80386.

FIGURE D.44  80×86 instruction mix for five SPECfp92 programs.

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

20%27.6%27.6%18.0%6.5%8.9%Load

8%7.8%7.8%11.5%3.1%12.4%Store

10%8.8%8.8%14.6%6.6%5.4%Add

3%2.4%2.4%3.3%2.4%1.0%Sub

Mul 0%

Div 0%

2%1.0%1.0%0.8%5.1%1.8%Compare

Mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

0%1.5%0.4%Loadimm

Cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%

Uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

0%0.1%0.1%1.6%0.5%Call

0%0.1%0.1%1.6%0.5%Return,jmpindirect

2%2.5%2.5%4.5%1.1%Shift

AND 0.8% 0.8% 0.7% 1.3% 1.3% 1%

OR 0%0.1%0.1%0.1%

Other (XOR, not, . . .) 0%

14%12.6%12.6%9.1%22.5%14.1%LoadFP

7%6.6%6.6%4.1%11.4%8.6%StoreFP

5%6.6%6.6%1.4%6.1%5.8%AddFP

3%2.9%2.9%3.1%2.7%2.2%SubFP

9%12.0%12.0%4.1%8.0%8.9%MulFP

0%0.2%0.2%0.8%2.1%DivFP

Compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%

Mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%

Other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%
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A counterexample is the IBM 360/370 architecture, which is much older than 
the 80×86. It dominates the mainframe market just as the 80×86 dominates the PC 
market. Due undoubtedly to a better base and more compatible enhancements, this 
instruction set makes much more sense than the 80×86 more than 30 years after 
its first implementation.

For better or worse, Intel had a 16-bit microprocessor years before its competitors’ 
more elegant architectures, and this head start led to the selection of the 8086 as 

FIGURE D.45  80×86 instruction mix for five SPECint92 programs.

Instruction eqntott espresso gcc (cc1) li Int. average

Load

Store

Add

Sub

Mul

Div

Compare

Mov reg-reg

Loadimm

Cond. branch

Uncond. branch

Call

Return, jmp indirect

Shift

AND

18.5%

3.2%

8.8%

10.6%

27.7%

0.6%

0.2%

28.6%

0.2%

0.4%

0.4%

1.0%

OR

23.3%

18.7%

6.1%

3.6%

7.7%

7.8%

15.4%

2.2%

3.2%

3.2%

8.4%

0.4%

 Other(XOR,not,...)

24.9%

16.6%

7.6%

2.9%

0.1%

13.5%

4.2%

0.4%

17.4%

2.2%

1.5%

1.5%

1.7%

4.5%

0.4%

0.1%

21.9%

8.3%

8.15%

3.5%

15.3%

5.0%

0.6%

18.9%

0.9%

0.7%

0.7%

2.5%

8.7%

2.7%

2.2%

compress

20.8%

13.8%

10.3%

7.0%

8.2%

7.9%

0.5%

15.5%

1.2%

0.5%

0.5%

3.8%

8.4%

0.6%

0.9%

Load FP

Store FP

Add FP

Sub FP

Mul FP

Div FP

Compare FP

Mov reg-reg FP

Other (abs, sqrt, . . .)

22%

12%

8%

5%

0%

0%

16%

4%

0%

20%

1%

1%

1%

1%

6%

1%

1%

0%

0%

0%

0%

0%

0%

0%

0%

0%



	 D.3  The Intel 80×86	 D-49

the CPU for the IBM PC. What it lacks in style is made up in quantity, making the 
80×86 beautiful from the right perspective.

The saving grace of the 80x86 is that its architectural components are not too 
difficult to implement, as Intel has demonstrated by rapidly improving performance 
of integer programs since 1978. High floating-point performance is a larger 
challenge in this architecture.

FIGURE D.47  Instructions executed and data accesses for five SPECfp92 programs on 80×86 and ratio to DLX.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 6197

Instructions executed ratio to DLX 1.62 1.73

Data reads on 80x86 (millions) 3643

Data writes on 80x86 (millions) 892

Data read-modify-writes on 80x86 (millions) 124

Total data reads on 80x86 (millions) 3767

3.513.91Data read ratio to DLX

Total data writes on 80x86 (millions) 1015

Data write ratio to DLX 9.35 20.35

Total data accesses on 80x86 (millions) 4782

4.354.47
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FIGURE D.46  Instructions executed and data accesses on 80×86 and ratios compared to DLX for five SPECint92 
programs.

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020

Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03

Data reads on 80x86 (millions) 589 229 622 1079 1459

Data writes on 80x86 (millions) 311 39 191 661 981

Data read-modify-writes on 80x86 (millions) 26 1 129 48 48

Total data reads on 80x86 (millions) 615 230 751 1127 1507

1.100.941.251.381.090.85Data read ratio to DLX

Total data writes on 80x86 (millions) 338 40 319 709 1029

3.151.201.252.399.261.67Data writer atioto DLX

Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

1.231.031.251.581.251.03Data access ratio to DLX



D-50	 Appendix D  Survey of Instruction Set Architectures

	 D.4	 The VAX Architecture

VAX: the most successful minicomputer design in industry history . . . the VAX was 
probably the hacker’s favorite machine . . . . Especially noted for its large, assembler-
programmer-friendly instruction set an asset that became a liability after the RISC 
revolution.

Eric Raymond
The New Hacker’s Dictionary (1991)

Introduction
To enhance your understanding of instruction set architectures, we chose the VAX as 
the representative Complex Instruction Set Computer (CISC) because it is so different 
from MIPS and yet still easy to understand. By seeing two such divergent styles, we 
are confident that you will be able to learn other instruction sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create instruction 
sets that were close to programming languages in order to simplify compilers. For 
example, because programming languages had loops, instruction sets should have loop 
instructions. As VAX architect William Strecker said (“VAX-11/780—A Virtual Address 
Extension to the PDP-11 Family,” AFIPS Proc., National Computer Conference, 1978):

A major goal of the VAX-11 instruction set was to provide for effective compiler 
generated code. Four decisions helped to realize this goal: 1) A very regular and 
consistent treatment of operators . . . . 2) An avoidance of instructions unlikely to 
be generated by a compiler . . . . 3) Inclusions of several forms of common operators 
. . . . 4) Replacement of common instruction sequences with single instructions . . . .  
Examples include procedure calling, multiway branching, loop control, and array 
subscript calculation.

FIGURE D.48  Percentage of instructions executed by category for 80×86 and DLX for the averages of five SPECint92 
and SPECfp92 programs of Figures D.46 and D.47.
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Recall that DRAMs of the mid-1970s contained less than 1/1000th the 
capacity of today’s DRAMs, so code space was also critical. Hence, another 
prevailing philosophy was to minimize code size, which is de-emphasized 
in fixed-length instruction sets like MIPS. For example, MIPS address fields 
always use 16 bits, even when the address is very small. In contrast, the VAX 
allows instructions to be a variable number of bytes, so there is little wasted 
space in address fields.

Whole books have been written just about the VAX, so this VAX extension 
cannot be exhaustive. Hence, the following sections describe only a few of its 
addressing modes and instructions. To show the VAX instructions in action, later 
sections show VAX assembly code for two C procedures. The general style will be 
to contrast these instructions with the MIPS code that you are already familiar 
with. The differing goals for VAX and MIPS have led to very different architectures. 
The VAX goals, simple compilers and code density, led to the powerful addressing 
modes, powerful instructions, and efficient instruction encoding. The MIPS goals 
were high performance via pipelining, ease of hardware implementation, and 
compatibility with highly optimizing compilers. The MIPS goals led to simple 
instructions, simple addressing modes, fixed-length instruction formats, and a 
large number of registers.

VAX Operands and Addressing Modes
The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide 
registers. Yet, the VAX supports many other data sizes and types, as Figure D.49 
shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities; in 
this text, a word means 32 bits. Figure D.49 shows the conversion between the 
MIPS data type names and the VAX names. Be careful when reading about VAX 
instructions, as they refer to the names of the VAX data types.

The VAX provides sixteen 32-bit registers. The VAX assembler uses the 
notation r0, r1,..., r15 to refer to these registers, and we will stick to that 
notation. Alas, 4 of these 16 registers are effectively claimed by the instruction set 
architecture. For example, r14 is the stack pointer (sp) and r15 is the program 
counter (pc). Hence, r15 cannot be used as a general-purpose register, and using 
r14 is very difficult because it interferes with instructions that manipulate the 
stack. The other dedicated registers are r12, used as the argument pointer (ap), 
and r13, used as the frame pointer (fp); their purpose will become clear later. 
(Like MIPS, the VAX assembler accepts either the register number or the register 
name.)

VAX addressing modes include those discussed in Appendix A, which has all 
the MIPS addressing modes: register, displacement, immediate, and PC-relative. 
Moreover, all these modes can be used for jump addresses or for data addresses.

But that’s not all the addressing modes. To reduce code size, the VAX has three 
lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit addresses 
called, respectively, byte displacement, word displacement, and long displacement 
addressing. Thus, an address can be not only as small as possible but also as large as 
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necessary; large addresses need not be split, so there is no equivalent to the MIPS 
lui instruction (see Figure A.24 on page A-37).

Those are still not all the VAX addressing modes. Several have a deferred 
option, meaning that the object addressed is only the address of the real object, 
requiring another memory access to get the operand. This addressing mode is 
called indirect addressing in other machines. Thus, register deferred, auto increment 
deferred, and byte/word/long displacement deferred are other addressing modes to 
choose from. For example, using the notation of the VAX assembler, r1 means 
the operand is register 1 and (r1) means the operand is the location in memory 
pointed to by r1.

There is yet another addressing mode. Indexed addressing automatically converts 
the value in an index operand to the proper byte address to add to the rest of the 
address. For a 32-bit word, we needed to multiply the index of a 4-byte quantity by 
4 before adding it to a base address. Indexed addressing, called scaled addressing 
on some computers, automatically multiplies the index of a 4-byte quantity by 4 as 
part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture 
separates the specification of the addressing mode from the specification of the 
operation. Hence, the opcode supplies the operation and the number of operands, 
and each operand has its own addressing mode specifier. Figure D.50 shows the 
name, assembler notation, example, meaning, and length of the address specifier.

The VAX style of addressing means that an operation doesn’t know where its 
operands come from; a VAX add instruction can have three operands in registers, 
three operands in memory, or any combination of registers and memory operands.

FIGURE D.49  VAX data types, their lengths, and names. The first letter of the VAX type (b, w, l, 
f, q, d, g, c) is often used to complete an instruction name. Examples of move instructions include movb, 
movw, movl, movf, movq, movd, movg, and movc3. Each move instruction transfers 
an operand of the data type indicated by the letter following mov.
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How long is the following instruction?

add13 r1,737 (r2), (r3) [r4]

The name addl3 means a 32-bit add instruction with three operands. Assume 
the length of the VAX opcode is 1 byte.

The first operand specifier—r1—indicates register addressing and is 1 byte 
long. The second operand specifier—737(r2)—indicates displacement 
addressing and has two parts: The first part is a byte that specifies the word 
displacement addressing mode and base register (r2); the second part is 
the 2-byte-long displacement (737). The third operand specifier— (r3) 
[r4]—also has two parts: The first byte specifies register deferred addressing 
mode ((r3)), and the second byte specifies the Index register and the use of 
indexed addressing ([r4]). Thus, the total length of the instruction is 1 + (1) 
+ (1 + 2) + (1 + 1) = 7 bytes.

In this example instruction, we show the VAX destination operand on the 
left and the source operands on the right, just as we show MIPS code. The VAX 
assembler actually expects operands in the opposite order, but we felt it would be 
less confusing to keep the destination on the left for both machines. Obviously, left 
or right orientation is arbitrary; the only requirement is consistency.

EXAMPLE

FIGURE D.50  Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte plus 
the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag and the remaining 6 
bits encode the constant value. If the constant is too big, it must use the immediate addressing mode. Note that the length of an 
immediate operand is dictated by the length of the data type indicated in the opcode, not the value of the immediate. The symbol d 
in the last four modes represents the length of the data in bytes; d is 4 for 32-bit add.

Addressing mode
name Example Meaning

Length of address
specifier in bytes

#value #–1

#100#value

r3rn

(rn) (r3)

Displacement(rn) 100(r3)

@displacement(rn) @100(r3)

Basemode[rx] (r3)[r4] d]

(rn)+ (r3)+

–(rn) –(r3)

Literal

Immediate

Register

Register deferred

Byte/word/long 
displacement

Byte/word/long 
displacement deferred

Indexed (scaled)

Autoincrement

Autodecrement

Autoincrement deferred @(rn)+ @(r3)+

–1

100

r3

Memory[r3]

Memory[r3 + 100]

Memory[Memory [r3 + 100]]

Memory[r3 + r4

Memory[r3]; r3 = r3 + d

r3 = r3 – d; Memory[r3]

Memory[Memory[r3]]; r3= r3 + d

1 (6-bit signed value)

1 + lengthofthe
immediate

1

1

1 + length of the
displacement

1 + length of the
displacement

1 + length of base 
addressing mode

1

1

1

(where d is data size in bytes)

Syntax

ANSWER
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Elaboration:  Because the PC is 1 of the 16 registers that can be selected in a 
VAX addressing mode, 4 of the 22 VAX addressing modes are synthesized from other 
addressing modes. Using the PC as the chosen register in each case, immediate 
addressing is really autoincrement, PC-relative is displacement, absolute is autoincrement 
deferred, and relative deferred is displacement deferred.

Encoding VAX Instructions
Given the independence of the operations and addressing modes, the encoding of 
instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation and 
the number of operands. The operands follow the opcode. Each operand begins 
with a single byte, called the address specifier, that describes the addressing mode 
for that operand. For a simple addressing mode, such as register addressing, this 
byte specifies the register number as well as the mode (see the rightmost column in 
Figure D.50). In other cases, this initial byte can be followed by many more bytes to 
specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the 
example on page D-24:

add 13 r1, 737 (r2), (r3) [r4]

Assume that this instruction starts at location 201.
Figure D.51 shows the encoding. Note that the operands are stored in memory 

in opposite order to the assembly code above. The execution of VAX instructions 
begins with fetching the source operands, so it makes sense for them to come first. 
Order is not important in fixed-length instructions like MIPS, since the source and 
destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is a specifier 
for the index mode using register r4. Like many of the other specifiers, the left 4 bits of 
the specifier give the mode and the right 4 bits give the register used in that mode. Since 
add13 is a 4-byte operation, r4 will be multiplied by 4 and added to whatever address is 

FIGURE D.51  The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming it 
starts at address 201. To satisfy your curiosity, the right column shows the actual VAX encoding in 
hexadecimal notation. Note that the 16-bit constant 737ten takes 2 bytes.

Byte address Contents at each byte Machine code

c1hexOpcode containing addl3201

44hexIndex mode specifier for [r4]202

203 Register indirect mode specifier for (r3) 63hex

204 Word displacement mode specifier using r2 as base c2hex

e1hexThe 16-bit constant 737205

02hex206

51hexRegister mode specifier for r1207
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specified next. In this case it is register deferred addressing using register r3. Thus, bytes 
202 and 203 combined define the third operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement addressing 
using register r2 as the base register. This specifier tells the VAX that the following 
two bytes, locations 205 and 206, contain a 16-bit address to be added to r2.

The final byte of the instruction gives the destination operand, and this specifier 
selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have many 
different lengths; for example, an integer add varies from 3 bytes to 19 bytes. VAX 
implementations must decode the first operand before they can find the second, 
and so implementors are strongly tempted to take 1 clock cycle to decode each 
operand; thus, this sophisticated instruction set architecture can result in higher 
clock cycles per instruction, even when using simple addresses.

VAX Operations
In keeping with its philosophy, the VAX has a large number of operations as well as a large 
number of addressing modes. We review a few here to give the flavor of the machine.

Given the power of the addressing modes, the VAX move instruction performs 
several operations found in other machines. It transfers data between any two 
addressable locations and subsumes load, store, register-register moves, and 
memory-memory moves as special cases. The first letter of the VAX data type (b, w, 
l, f, q, d, g, c in Figure D.49) is appended to the acronym mov to determine the size 
of the data. One special move, called move address, moves the 32-bit address of the 
operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major 
differences. First, the type of the data is attached to the name. Thus, addb,addw, and 
addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respectively; 
MIPS has a single add instruction that operates only on the full 32-bit register. The 
second difference is that to reduce code size the add instruction specifies the number 
of unique operands; MIPS always specifies three even if one operand is redundant. For 
example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

add l2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the opcode 
and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

(operation) (datatype) 2
3(   )

The operation add works with data types byte, word, long, float, and double and 
comes in versions for either 2 or 3 unique operands, so the following instructions 
are all found in the VAX:
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addb2 addw2 add12 addf2 addd2
addb3 addw3 add13 addf3 addd3

Accounting for all addressing modes (but ignoring register numbers and 
immediate values) and limiting to just byte, word, and long, there are more than 
30,000 versions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions that 
either replace sequences of instructions or take fewer bytes to represent a single 
instruction. Here are four such examples (∗ means the data type):
VAX operation Example Meaning

clr∗ clrl r3 r3 = 0
inc∗ incl r3 r3 = r3+1
dec∗ decl r3 r3 = r3 −1
push∗ pushl r3 sp = sp −4; 

Memory[sp] = r3;

The push instruction in the last row is exactly the same as using the move instruction 
with autodecrement addressing on the stack pointer:

movl − (sp), r3

Brevity is the advantage of pushl: It is 1 byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because the 
branch instructions rely on condition codes. Condition codes are set as a side effect of 
an operation, and they indicate whether the result is positive, negative, or zero or if an 
overflow occurred. Most instructions set the VAX condition codes according to their 
result; instructions without results, such as branches, do not. The VAX condition 
codes are N (Negative), Z (Zero), V (oVerflow), and C (Carry). There is also a compare 
instruction cmp∗ just to set the condition codes for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instructions 
include beql (=), bneq (≠), blss (<), bleq (≤), bgtr (>), and bgeq 
(≥), which do just what you would expect. There are also unconditional branches 
whose name is determined by the size of the PC-relative offset. Thus, brb (branch 
byte) has an 8-bit displacement, and brw (branch word) has a 16bit displacement.

The final major category we cover here is the procedure call and return instructions. 
Unlike the MIPS architecture, these elaborate instructions can take dozens of clock 
cycles to execute. The next two sections show how they work, but we need to explain 
the purpose of the pointers associated with the stack manipulated by calls and 
ret. The stack pointer, sp, is just like the stack pointer in MIPS; it points to the top 
of the stack. The argument pointer, ap, points to the base of the list of arguments or 
parameters in memory that are passed to the procedure. The frame pointer, fp, points 
to the base of the local variables of the procedure that are kept in memory (the stack 
frame). The VAX call and return instructions manipulate these pointers to maintain 
the stack in proper condition across procedure calls and to provide convenient base 
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FIGURE D.52  Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h, and q. 
The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this instruction.

InstructionmeaningExampleInstructiontype

mov* Move between two operands

an operand; data type is last

type 

Conditional and unconditional branchesControl

nd; branch if result second operand

Example: sort” on page K-33)

Data transfers Move data between byte, half-word, word, or double-word operands; * is data type

Arithmetic/logical Operations on integer or logical bytes, half words (16 bits), words (32 bits); * is data 

Procedure Call/return from procedure

Floating point Floating-point operations on D, F, G, and H formats

SpecialoperationsOther

movzb* Move a byte to a half word or word, extending it with zeros

mova* M ove the 32-bit addressof 

push* Push operand onto stack

add*_ Add with 2 or 3 operands

cmp* Compare and set condition codes

tst* Compare to zero and set condition codes

ash* Arithmetic shift

clr* Clear

cvtb* Sign-extend byte to size of data type

beql, bneq Branch equal, branch not equal

bleq, bgeq Branch less than or equal, branch greater than or equal

brb, brw Unconditional branch with an 8-bit or 16-bit address

jmp Jump using any addressing mode to specify target

aobleq Add one to opera

case_ Jump based on case selector

calls Call procedure with arguments on stack (see “A Longer 

callg Call procedure with FORTRAN-style parameter list

jsb Jump to subroutine, saving return address (like MIPS jal)

ret Return from procedure call

addd_ Add double-precision D-format floating numbers

subd_ Subtract double-precision D-format floating numbers

mulf_ Multiply single-precision F-format floating point

polyf Evaluate a polynomial using table of coefficients in F format

crc Calculate cyclic redundancy check

insque Insert a queue entry into a queue
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registers to use when accessing memory operands. As we shall see, call and return 
also save and restore the general-purpose registers as well as the program counter. 
Figure D.52 gives a further sampling of the VAX instruction set.

An Example to Put It All Together: swap
To see programming in VAX assembly language, we translate two C procedures, 
swap and sort. The C code for swap is reproduced in Figure D.53.

The next section covers sort.
We describe the swap procedure in three general steps of assembly language 

programming:

1.	 Allocate registers to program variables.

2.	 Produce code for the body of the procedure.

3.	 Preserve registers across the procedure invocation.

The VAX code for these procedures is based on code produced by the VMS C 
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this step 
of assembly language programming is more properly called “variable allocation.” 
The standard VAX convention on parameter passing is to use the stack. The two 
parameters, v[ ] and k, can be accessed using register ap, the argument pointer: 
The address 4(ap) corresponds to v[ ] and 8(ap) corresponds to k. Remember 
that with byte addressing the address of sequential 4-byte words differs by 4. The 
only other variable is temp, which we associate with register r3.

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v [k] ;
v [k] = v [k+1] ;
v [k+1] = temp ;

FIGURE D.53  A C procedure that swaps two locations in memory. This procedure will be 
used in the sorting example in the next section.

swap(int v[], int k)
{
   int temp;
   temp = v[k];
   v[k] = v[k + 1];
   v[k + 1] = temp;
}
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Since this program uses v[ ] and k several times, to make the programs run 
faster the VAX compiler first moves both parameters into registers:

movl r2, 4 (ap) ; r2 = v[ ]
movl r1, 8 (ap) ; r1 = k

Note that we follow the VAX convention of using a semicolon to start a 
comment; the MIPS comment symbol # represents a constant operand in VAX 
assembly language.

The VAX has indexed addressing, so we can use index k without converting it to 
a byte address. The VAX code is then straightforward:

movl r3, (r2) [r1] ; r3 (temp) = v [k]
addl3 r0, #1,8(ap) ; r0 = k + 1
movl (r2) [r1], (r2) [r0] ; v[k] = v[r0] (v[k + 1])
movl (r2) [r0], r3 ; v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX 
code is one memory-to-register move, one memory-to-memory move, and one 
register-to-memory move. Note that the addl3 instruction shows the flexibility of 
the VAX addressing modes: It adds the constant 1 to a memory operand and places 
the result in a register.

Now we have allocated storage and written the code to perform the operations 
of the procedure. The only missing item is the code that preserves registers across 
the routine that calls swap.

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers, calls and ret. This 
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code 
above, we see that the values in registers r0, r1, r2, and r3 must be saved so 
that they can later be restored. The calls instruction expects a 16-bit mask at the 
beginning of the procedure to determine which registers are saved: if bit i is set in 
the mask, then register i is saved on the stack by the calls instruction. In addition, 
calls saves this mask on the stack to allow the return instruction (ret) to restore 
the proper registers. Thus, the calls executed by the caller does the saving, but the 
callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed, 
so that calls can adjust the pointers associated with the stack: the argument pointer 
(ap), frame pointer (fp), and stack pointer (sp). Of course, calls also saves the 
program counter so that the procedure can return!

Thus, to preserve these four registers for swap, we just add the mask at the 
beginning of the procedure, letting the calls instruction in the caller do all the work:

word ∧m<r0, r1, r2, r3> ; set bits in mask for 0, 1, 2, 3

This directive tells the assembler to place a 16-bit constant with the proper bits 
set to save registers r0 through r3.
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The return instruction undoes the work of calls. When finished, ret sets the 
stack pointer from the current frame pointer to pop everything calls placed on 
the stack. Along the way, it restores the register values saved by calls, including 
those marked by the mask and old values of the fp, ap, and pc.

To complete the procedure swap, we just add one instruction:

ret ; restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure D.54 identifies each block of code 
with its purpose in the procedure, with the MIPS code on the left and the VAX code 
on the right. This example shows the advantage of the scaled indexed addressing 
and the sophisticated call and return instructions of the VAX in reducing the 
number of lines of code. The 17 lines of MIPS assembly code became 8 lines of 
VAX assembly code. It also shows that passing parameters in memory results in 
extra memory accesses.

Keep in mind that the number of instructions executed is not the same as 
performance; the fallacy on page K-38 makes this point.

Note that VAX software follows a convention of treating registers r0 and r1 as 
temporaries that are not saved across a procedure call, so the VMS C compiler does 
include registers r0 and r1 in the register saving mask. Also, the C compiler should 
have used r1 instead of 8(ap) in the addl3 instruction; such examples inspire 
computer architects to try to write compilers!

FIGURE D.54  MIPS versus VAX assembly code of the procedure swap in Figure D.53 on 
page D-58.

MIPS versus VAX

Saving register

Procedure body

Restoring registers

swap: addi $29,$29, –12
sw $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap:.word ^m<r0,r1,r2,r3>

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a) 
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

lw $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return

ret$31jr
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A Longer Example: sort
We show the longer example of the sort procedure. Figure D.55 shows the C version 
of the program. Once again we present this procedure in several steps, concluding 
with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in 
locations 4(ap) and 8(ap), respectively. The two local variables are assigned to 
registers: i to r6 and j to r4. Because the two parameters are referenced frequently in 
the code, the VMS C compiler copies the address of these parameters into registers 
upon entering the procedure:

moval r7, 8(ap) ;move address of n into r7
moval r5, 4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more 
useful than its address, but once again we bow to the decision of the VMS C compiler. 
Apparently the compiler cannot be sure that v and n don’t overlap in memory.

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which 
includes parameters. Let’s unwrap the code from the outside to the middle.

The Outer Loop
The first translation step is the first for loop:

for (i = 0 ; i < n ; i = i + 1){

Recall that the C for statement has three parts: initialization, loop test, and 
iteration increment. It takes just one instruction to initialize i to 0, the first part of 
the for statement:

clrl   r6   ;i = 0

It also takes just one instruction to increment i, the last part of the for:
incl r6 ;i = i + 1

FIGURE D.55  A C procedure that performs a bubble sort on the array v.

sort (int v[], int n)
{
int i, j;
for (i = 0; i < n; i = i + 1) {
for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1)
{ swap(v,j);

}
}

}
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The loop should be exited if i < n is false, or said another way, exit the loop if i≥. 
n. This test takes two instructions:

for1tst: cmpl r6, (r7) ; compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i≥n)

Note that cmpl sets the condition codes for use by the conditional branch 
instruction bgeq.

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ; i = 0
for1tst:cmpl r6,(r7) ; compare r6 and memory[r7] (i : n)

bgeqexit1 ; go to exit1 if r6 mem[r7](i n)
. . .

(body of first for loop)
. . .

incl r6 ; i = i + 1
brb for1tst ; branch to test of outer loop

exit1:

The Inner Loop
The second for loop is

for (j = i – 1; j > = 0 && v[j] > v[j + 1]; j = j – 1) {

The initialization portion of this loop is again one instruction:

subl3 r4, r6, #1 ;j = i–1
The decrement of j is also one instruction:

decl r4 ;j = j–1
The loop test has two parts. We exit the loop if either condition fails, so the first test 
must exit the loop if it fails (j < 0):
for2tst : blss exit2 ;go to exit2 if r4 <0 (j < 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit 
of condition codes, with the conditions being set as a side effect of the prior 
instruction. This branch skips over the second condition test.

The second test exits if v [j] > v[j+1] is false, or exits if v [j] ≤ v [j+1]. 
First we load v and put j+1 into registers:
movl r3, (r5) ; r3 = Memory [r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
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Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without 

converting to the byte address, so the two instructions for v [j] ≤ v [j + 1] 
are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j] : v[ j + 1 ])
bleq exit2 ;go to exit2 if v [j] ≤ v[ j + 1 ]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:
subl3 r4,r6, #1 ;j = i – 1

for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)
movl r3, (r5) ;r3 = Memory [r5] (r3 = v)
addl3 r2, r4, #1 ;r2 = r4 + 1(r2 = j + 1)
cmpl (r3) [r4], (r3) [r2] ; v [r4] : v [r2]
bleq exit2 ;go to exit2 if v[j] ð [j + 1]

...

(body of second for loop)...

decl r4 ; j = j – 1
brb for2tst ; jump to test of inner loop exit2:

Notice that the instruction blss (at the top of the loop) is testing the condition 
codes based on the new value of r4 (j), set either by the subl3 before entering 
the loop or by the decl at the bottom of the loop.

The Procedure Call
The next step is the body of the second for loop:

swap(v, j) ;

Calling swap is easy enough:
calls #2, swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters
The C compiler passes variables on the stack, so we pass the parameters to swap 
with these two instructions:

pushl (r5) ; first swap parameter is v
pushl r4 ; second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.
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Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee 
save convention. This procedure uses registers r2 through r7, so we add a mask 
with those bits set:

.word ˆm<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure D.56. To make the code easier to 
follow, once again we identify each block of code with its purpose in the procedure 
and list the MIPS and VAX code side by side. In this example, 11 lines of the sort 
procedure in C become the 44 lines in the MIPS assembly language and 20 lines 
in VAX assembly language. The biggest VAX advantages are in register saving and 
restoring and indexed addressing.

Fallacies and Pitfalls
The ability to simplify means to eliminate the unnecessary so that the necessary may speak.

Hans Hoffman
Search for the Real (1967)

Fallacy It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hardware 
and software technologies. Over time those technologies are likely to change, and 
decisions that may have been correct at one time later look like mistakes. For 
example, in 1975 the VAX designers overemphasized the importance of code size 
efficiency and underestimated how important ease of decoding and pipelining 
would be 10 years later. And, almost all architectures eventually succumb to the lack 
of sufficient address space. Avoiding these problems in the long run, however, would 
probably mean compromising the efficiency of the architecture in the short run.

Fallacy An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-relative, 
and the address is too small in displacement addressing. Yet, the machine has been 
an enormous success because it correctly handled several new problems. First, the 
architecture has a large amount of address space. Second, it is byte addressed and 
handles bytes well. Third, it is a general-purpose register machine. Finally, it is simple 
enough to be efficiently implemented across a wide performance and cost range.

The Intel 8086 provides an even more dramatic example. The 8086 architecture 
is the only widespread architecture in existence today that is not truly a general 
purpose register machine. Furthermore, the segmented address space of the 8086 
causes major problems for both programmers and compiler writers. Nevertheless, 
the 8086 architecture—because of its selection as the microprocessor in the IBM 
PC—has been enormously successful.
Fallacy The architecture that executes fewer instructions is faster.
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FIGURE D.56  MIPS32 versus VAX assembly version of procedure sort in Figure D.55 on page D-61.

MIPS versus VAX

Saving registers

sort: addi $29,$29, –36
sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort:.word ^m<r2,r3,r4,r5,r6,r7>

Procedure body

Move parameters move $18, $4
move $20, $5

Outer loop
add $19, $0, $0

for1tst: slt $8, $19, $20
beq $8, $0, exit1

Inner loop

for2tst: slti $8, $17, 0
bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

Inner loop

Outer loop exit2: addi $19, $19, 1

$17, $17, –1addi
j for2tst

j for1tst

moval r7,8(ap)
moval r5,4(ap)

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

subl3 r4,r6,#1

blss exit2
movl r3,(r5)

addl3 r2,r4,#1 
cmpl (r3)[r4],(r3)[r2]
bleq exit2

pushl (r5)
pushl r4
calls #2,swap

decl r4
brb for2tst

exit2: incl r6
brb for1tst

Restoring registers

exit1: lw $15,0($29)
lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return

retexit1:$31jr
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Designers of VAX machines performed a quantitative comparison of VAX and 
MIPS for implementations with comparable organizations, the VAX 8700 and the 
MIPS M2000. Figure D.57 shows the ratio of the number of instructions executed 
and the ratio of performance measured in clock cycles. MIPS executes about twice 
as many instructions as the VAX while the MIPS M2000 has almost three times the 
performance of the VAX 8700.

Concluding Remarks
The Virtual Address eXtension of the PDP-11 architecture … provides a virtual 
address of about 4.3 gigabytes which, even given the rapid improvement of memory 
technology, should be adequate far into the future.

William Strecker

“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,”
AFIPS Proc., National Computer Conference (1978)

We have seen that instruction sets can vary quite dramatically, both in how 
they access operands and in the operations that can be performed by a single 
instruction. Figure D.58 compares instruction usage for both architectures for 
two programs; even very different architectures behave similarly in their use of 
instruction classes.

A product of its time, the VAX emphasis on code density and complex operations 
and addressing modes conflicts with the current emphasis on easy decoding, simple 
operations and addressing modes, and pipelined performance.

FIGURE D.57  Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance 
in clock cycles using SPEC89 programs. On average, MIPS executes a little over twice as many 
instructions as the VAX, but the CPI for the VAX is almost six times the MIPS CPI, yielding almost a 
threefold performance advantage. Based on data from “Performance from Architecture: Comparing a RISC 
and CISC with Similar Hardware Organization,” by D. Bhandarkar and D. Clark, in Proc. Symp. Architectural 
Support for Programming Languages and Operating Systems IV, 1991.
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With more than 600,000 sold, the VAX architecture has had a very successful 
run. In 1991, DEC made the transition from VAX to Alpha.

Orthogonality is key to the VAX architecture; the opcode is independent of the 
addressing modes, which are independent of the data types and even the number of 
unique operands. Thus, a few hundred operations expand to hundreds of thousands of 
instructions when accounting for the data types, operand counts, and addressing modes.

Exercises

	D.1  [3] <D.4> The following VAX instruction decrements the location pointed to 
be register r5:

 decl (r5)
What is the single MIPS instruction, or if it cannot be represented in a single 

instruction, the shortest sequence of MIPS instructions, that performs the same 
operation? What are the lengths of the instructions on each machine?

	D.2  [5] <D.4> This exercise is the same as Exercise D.1, except this VAX 
instruction clears a location using autoincrement deferred addressing: 

clrl @ (vr5) +

	D.3  [5] <D.4> This exercise is the same as Exercise D.1, except this VAX 
instruction adds 1 to register r5, placing the sum back in register r5, compares the 
sum to register r6, and then branches to L1 if r5 < r6:

aoblss r6, r5, L1 # r5 = r5 + 1; if (r5 < r6) 
go to L1.

	D.4  [5] <D.4> Show the single VAX instruction, or minimal sequence of 
instructions, for this C statement:

a = b + 100;
Assume a corresponds to register r3 and b corresponds to register r4.

	D.5  [10] <D.4> Show the single VAX instruction, or minimal sequence of 
instructions, for this C statement:

x [i + 1] = x [i] + c;
Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit 

words beginning at memory location 4,000,000ten.

FIGURE D.58  The frequency of instruction distribution for two programs on VAX and MIPS.

Program Machine Branch
Arithmetic/

 logical
Data 
transfer

Floating
point Totals

gcc VA X 30% 40% 19% 89%

MIP S 24% 35% 27% 86%

spice VA X 18% 23% 15% 23% 79%

MIPS 4% 29% 35% 15% 83%
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	 D.5	 The IBM 360/370 Architecture for 
Mainframe Computers

Introduction
The term “computer architecture” was coined by IBM in 1964 for use with the IBM 
360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the programmer-
visible portion of the instruction set. They believed that a family of machines of the 
same architecture should be able to run the same software. Although this idea may 
seem obvious to us today, it was quite novel at the time. IBM, even though it was 
the leading company in the industry, had five different architectures before the 360. 
Thus, the notion of a company standardizing on a single architecture was a radical 
one. The 360 designers hoped that six different divisions of IBM could be brought 
together by defining a common architecture. Their definition of architecture was

… the structure of a computer that a machine language programmer must 
understand to write a correct (timing independent) program for that machine.

The term machine language programmer meant that compatibility would 
hold, even in assembly language, while timing independent allowed different 
implementations.

The IBM 360 was introduced in 1964 with six models and a 25:1 performance 
ratio. Amdahl, Blaauw, and Brooks [1964] discussed the architecture of the IBM 360 
and the concept of permitting multiple object-code-compatible implementations. 
The notion of an instruction set architecture as we understand it today was the most 
important aspect of the 360. The architecture also introduced several important 
innovations, now in wide use:

1.	 32-bit architecture

2.	 Byte-addressable memory with 8-bit bytes

3.	 8-, 16-, 32-, and 64-bit data sizes

4.	 32-bit single-precision and 64-bit double-precision floating-point data

In 1971, IBM shipped the first System/370 (models 155 and 165), which included a 
number of significant extensions of the 360, as discussed by Case and Padegs [1978], 
who also discussed the early history of System/360. The most important addition 
was virtual memory, though virtual memory 370 s did not ship until 1972, when a 
virtual memory operating system was ready. By, 1978, the high-end 370 was several 
hundred times faster than the low-end 360 s shipped 10 years earlier. In 1984, the 
24 bit addressing model built into the IBM 360 needed to be abandoned, and the 
370-XA (eXtended Architecture) was introduced. While old 24-bit programs could 
be supported without change, several instructions could not function in the same 
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manner when extended to a 32-bit addressing model (31-bit addresses supported) 
because they would not produce 31-bit addresses. Converting the operating system, 
which was written mostly in assembly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made. 
Shustek’s thesis [1978] is the best known and most complete study of the 360/370 
architecture. He made several observations about instruction set complexity that 
were not fully appreciated until some years later. Another important study of the 
360 is the Toronto study by Alexander and Wortman [1975] done on an IBM 360 
using 19 XPL programs.

System/360 Instruction Set
The 360 instruction set is shown in the following tables, organized by instruction 
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The ∗ indicates the instruction is floating point, and may be either D (double 
precision) or E (single precision).

Instruction Description

ALR Add logical register

AR Add register

A∗R FP addition

CLR Compare logical register

CR Compare register

C∗R FP compare

DR Divide register

D∗R FP divide

H∗R FP halve

LCR Load complement register

LC∗R Load complement

LNR Load negative register

LN∗R Load negative

LPR Load positive register

LP∗R Load positive

LR Load register

L∗R Load FP register

LTR Load and test register

LT∗R Load and test FP register

MR Multiply register

M∗R FP multiply

NR And register

OR Or register
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Instruction Description

SLR Subtract logical register

SR Subtract register

S∗R FP subtraction

XR Exclusive or register

Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status; 
several of them are privileged and legal only in supervisor mode.

Instruction Description

BALR Branch and link

BCTR Branch on count

BCR Branch/condition

ISK Insert key

SPM Set program mask

SSK Set storage key

SVC Supervisor call

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word 
operation (and then stands for nothing) or H (meaning half word); for example, 
A+ stands for the two opcodes A and AH. The “∗” represents D or E, standing for 
double- or single-precision floating point.

Instruction Description

A+ Add

A∗ FP add

AL Add logical

C+ Compare

C∗ FP compare

CL Compare logical

D Divide

D∗ FP divide

L+ Load

L∗ Load FP register

M+ Multiply

M∗ FP multiply

N And

O Or

S+ Subtract
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Instruction Description

S∗ FP subtract

SL Subtract logical

ST+ Store

ST∗ Store FP register

X Exclusive or

Branches and Special Loads and Stores—RX Format

Instruction Description

BAL Branch and link

BC Branch condition

BCT Branch on count

CVB Convert-binary

CVD Convert-decimal

EX Execute

IC Insert character

LA Load address

STC Store character

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “∗” may be A 
(arithmetic) or L (logical).

Instruction Description

BXH Branch/high

BXLE Branch/low-equal

CLI Compare logical immediate

HIO Halt I/O

LPSW Load PSW

LM Load multiple

MVI Move immediate

NI And immediate

OI Or immediate

RDD Read direct

SIO Start I/O

SL∗ Shift left A/L

SLD∗ Shift left double A/L

SR∗ Shift right A/L

SRD∗ Shift right double A/L
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Instruction Description

SSM Set system mask

STM Store multiple

TCH Test channel

TIO Test I/O

TM Test under mask

TS Test-and-set

WRD Write direct

XI Exclusive or immediate

SS Format Instructions

These are add decimal or string instructions.

Instruction Description

AP Add packed

CLC Compare logical chars

CP Compare packed

DP Divide packed

ED Edit

EDMK Edit and mark

MP Multiply packed

MVC Move character

MVN Move numeric

MVO Move with offset

MVZ Move zone

NC And characters

OC Or characters

PACK Pack (Character → decimal)

SP Subtract packed

TR Translate

TRT Translate and test

UNPK Unpack

XC Exclusive or characters

ZAP Zero and add packed



FIGURE D.59  Distribution of instruction execution frequencies for the four 360 programs. 
All instructions with a frequency of execution greater than 1.5% are included. Immediate instructions, which 
operate on only a single byte, are included in the section that characterized their operation, rather than with 
the long character-string versions of the same operation. By comparison, the average frequencies for the 
major instruction classes of the VAX are 23% (control), 28% (arithmetic), 29% (data transfer), 7% (floating 
point), and 9% (decimal). Once again, a 1% entry in the average column can occur because of entries in 
the constituent columns. These programs are a compiler for the programming language PL-I and runtime 
systems for the programming languages FORTRAN, PL/I, and Cobol.

Instruction PLIC FORTGO PLIGO COBOLGO Average

5%

21%

3%

1%

4%

2%

28%

16%

7%

2%

2%

5%

29%

56%

90%

13%

17%

7%

6%

1%

4%

1%

23%

7%

7%

3%

1%

7%

3%

3%

13%

35%

40%

95%

28%

3%

3%

3%

8%

7%

5%

3%

7%

2%

3%

3%

2%

4%

32%

29%

17%

4%

82%

BC, BCR
BAL, BALR

A, AR
SR
SLL
LA
CLI
NI
C
TM
MH

L, LR
MVI

ST
LD
STD
LPDR
LH
IC
LTR

AD
MDR

MVC
AP
ZAP
CVD
MP
CLC
CP
ED

Control

Arithmetic/ logical

Data transfer

Floating point

Decimal, string

Total

14%

2%

0%

3%

19%

1%

7%

16%

9%

20%

40%

85%

7%

11%

1%

2%

5%

3%

3%

9%

15%

1%

10%

3%

2%

2%

2%

3%

2%

1%

19%

5%

3%

2%

2%

1%

1%

1%

0%

1%

1%

3%

16%

26%

33%

2%

11%

88%

2%

3%

0%

1%

1%

1%

1%

2%
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360 Detailed Measurements
Figure D.59 shows the frequency of instruction usage for four IBM 360 programs.

	 D.6	 Historical Perspective and References

Section L.4 of Computer Architecture: A Quantitative Approach, 6th edition 
(available online) features a discussion on the evolution of instruction sets and 
includes references for further reading and exploration of related topics.
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