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Like our nah1rallanguages, programming languages facilitate the expression and com-
munication of ideas between people. However, programming languages differ from nat-
ural languages in two important ways. First, programming languages also enable the 
communication of ideas between people and computing machines. Second, program-
ming languages have a nanower expressive domain than our natural languages. That is, 
they facilitate only the communication of computational ideas. Thus, a programming 
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language must meet different requirements than a natural language. This text explores 
these requirements and the language design alternatives that they evoke. 

In this study, we identify the many similarities between programming languages and 
natural languages. We also examine the fundamental differences that are imposed by the 
computational setting in which a program must function. We examine the features of 
programming languages both abstractly and actively. That is, we combine a conceptually 
rich treatment of programming language design together with a hands-on laboratory-
based study of how these concepts impact language designers and programmers in a 
wide range of application domains. 

This study is important because to.day's computer science students will be the 
designers and users of tomorrow's programming languages. To become an informed 
language designer and user, you will need to understand languages broadly-their fea-
tures, strengths, and weaknesses across a wide range of programming styles and appli-
cations. Knowing one language and application domain does not provide such breadth 
of understanding. This book will help you to obtain that breadth. 

L1 PRINCIPLES 
Language designers have a basic vocabulary about language structure, meaning, and 
pragmatic concerns that helps them understand how languages work. Their vocabulary 
falls into three major categories that we call the principles of language design. 

• Syntax 
• Names and types 
• Semantics 

Many of the concepts in these categories are borrowed from linguistics and mathematics, 
as we shall learn below. Together, these categories provide an organizational focus for 
the core Chapters 2, 4, 5, 7, and 9 respectively. Additional depth of study in each category 
is provided in the companion chapters (3, 6, 8, !0, and 11) as explained below. 

Syntax The syntax of a language describes what constitutes a structurally correct 
program. Syntax answers many questions. What is the grammar for writing programs in 
the language? What is the basic set of words and symbols that programmers use to write 
structurally correct programs? 

We shall see that most of the syntactic structure of modern programming languages 
is defined using a linguistic formalism called the contextjree grammm: Other elements 
of syntax are outside the realm of context-free grammars, and are defined by other means. 
A careful treatment of programming language syntax appears in Chapter 2. 

A study of language syntax raises many questions. How does a compiler analyze the 
syntax of a program? How are syntax errors detected? How does a context-free grammar 
facilitate the development of a syntactic analyzer? These deeper questions about syntax 
are addressed in Chapter 3. 

Names and Types The vocabulary of a programming language includes a care-
fully designed set of rules for naming entities- variables, functions, classes, parameters, 
and so forth. Names of entities also have other properties during the life of a program, 
such as their scope, visibility, and binding. The study of names in programming languages 
and their impact on the syntax and semantics of a program is the subject of Chapter 4. 
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A language's types denote the kinds of values that programs can manipulate: simple 
types, structured types, and more complex types. Among the simple types are integers, 
decimal numbers, characters, and boolean values. Structured types include character 
strings, lists, trees, and hash tables. More complex types include functions and classes. 
Types are more fully discussed in Chapter 5. 

A type system enables the programmer to understand and properly implement opera-
tions on values of various types. A carefully specified type system allows the compiler to 
perfonn rigorous type checking on a program before run time, thus heading off run-time 
errors that may occur because of inappropriately typed operands. The full specification 
and implementation of a type system is the focus of a deeper study in Chapter 6. 

Semantics The meaning of a program is defined by its semantics. That is, when 
a program is run, the effect of each statement on the values of the variables in the 
program is given by the semantics of the language. Thus, when we write a program, 
we must understand such basic ideas as the exact effect that an assignment has on the 
program's variables. If we have a semantic model that is independent of any particular 
platfonn, we can apply that model to a variety of machines on which that language may 
be implemented. We study semantics in Chapter 7. 

The implementation of 1un-time semantics is also of interest in a deeper study 
of semantics. How does an interpreter work, and what is the connection between an 
interpreter and the specification of a language's semantics? These deeper questions are 
studied in Chapter 8. 

Functions represent the key element of procedural abstraction in any language. An 
understanding of the semantics of function definition and call is central to any study of 
programming languages. The implementation of functions also requires an understanding 
of the static and dynamic elements of memory, including the run-time stack. The stack 
also helps us understand other ideas like the scope of a name and the lifetime of an 
object. These topics are treated in Chapter 9. 

The stack implementation of function call and return is a central topic deserving 
deeper study. Moreover, strategies for the management of another memory area called 
the heap, are important to the understanding of dynamic objects like arrays. Heap man-
agement techniques called "garbage collection" are strongly related to the implementa-
tion of these dynamic objects. The stack and the heap are studied in detail in Chapters 10 
and 11 respectively. 

1.2 PARADIGMS 
In general, we think of a "paradigm" as a pattem of thought that guides a collection of 
related activities. A programming paradigm is a pattern of problem solving thought that 
underlies a particular genre of programs and languages. Four distinct and fundamental 
programming paradigms have evolved over the last thTee decades: 

• Imperative programming 
• Object -oriented programming 
• Functional programming 
o Logic programming 
Some programming languages are intentiona11y designed to support more than one 

paradigm. For instance, C++ is a hybrid imperative and object-oriented language, while 
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I Figure 1.1 The von Neumann-Eckert Computer Model 

the experimental language Leda [Budd, 1995] is designed to support the imperative, 
object-oriented, functional, and logic programming paradigms. These languages are rem-
iniscent of earlier efforts (notably, PL/I, Algol 68, and Ada) to design a single language 
that was more general-purpose than other programming languages of its day. With the 
exception of C++. these efforts have failed to attract sustained interest. 

Imperative Programming Imperative programming is the oldest paradigm, as it 
is grounded in the classic "von Neumann-Eckert" model of computation (see Figure 1.1). 
In this model, both the program and its variables are stored together, and the program 
contains a series of commands that perform calculations, assign values to variables, 
retrieve input, produce output, or redirect control elsewhere in the series. 

Procedural abstraction is an essential building block for imperative programming, 
as are assignments, loops, sequences, conditional statements, and exception handling. 
The predominant imperative programming languages include Cobol, Fortran, C, Ada, 
and Perl. The imperative programming paradigm is the subject of Chapter 12. 

Object-Oriented Programming Object-oriented ( 00) programming provides 
a model in which the program is a collection of objects that interact with each other 
by passing messages that transform their state. In this sense, message passing allows 
the data objects to become active rather than passive. This characteristic helps to fur-
ther distinguish 00 programming from imperative programming. Object classification, 
inheritance, and message passing are fundamental building blocks for 00 programming. 
Major object-oriented languages are Smalltalk, C++, Java, and C#. 00 programming 
is studied in Chapter 13. 

Functional Programming Functional programming models a computational 
problem as a collection of mathematical functions, each with an input (domain) and 
a result (range) spaces. This sets functional programming apart from languages with an 
assignment statement. For instance, the assignment statement 

X = X + 1 

makes no sense either in functional prograrruning or in mathematics. 
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Functions interact and combine with each other using functional composition, con-
ditionals, and recursion. Major functional programming languages are Lisp, Scheme, 
Haskell, and ML. Functional programming is discussed and illustrated in Chapter 14. 

Logic Programming Logic (declarative) programming allows a program to model 
a problem by declaring what outcome the program should accomplish, rather than how 
it should be accomplished. Sometimes these languages are called rule-based languages, 
since the program's declarations look more like a set of rules, or constraints on the 
problem, ra;ber than a sequence of commands to be carried out. 

Interpreting a logic program's declarations creates a set of all possible solutions 
to the problem that it specifies. Logic programming also provides a natural vehicle for 
expressing non determinism, which is approp1iate for problems whose specifications are 
incomplete. The major logic programming language is Prolog, and the logic program-
rning paradigm is covered in Chapter 15. 

1.3 SPECIAL TOPICS 
Beyond these four paradigms, several key topics in programming language design 
deserve extensive coverage in a text such as this one. These topics tend to be perva-
sive, in the sense that they appear in two or more of the above paradigms, rather than 
just one. Each of the following is briefly introduced below. 

• Event-handling 
• Concurrency 
• Correctness 

Event-Handling Event·handling occurs with programs that respond to events that 
are generated in an unpredictable order. In one sense, an event-driven program is just a 
program whose behavior is fully determined by event-handling concerns. Event-handling 
is often coupled with the object-oriented paradigm (e.g., Java applets), although it occurs 
within the imperative paradigm as well (e.g., Tcl/Tk). Events originate from user actions 
on the screen (mouse clicks or keystrokes, for example), or else from other sources (like 
readings from sensors on a robot). Major languages that support event-handling include 
Visual Basic, Java and Tcl/Tk. This topic is treated in Chapter 16. 

Concurrency Concurrent programming can occur within the imperative, object-
oriented, functional, or logic paradigm. Concurrency occurs when the program has a 
collection of asynchronous elements, which may share information or synchronize with 
each other from time to time. Concurrency can also occur within an individual process, 
such as the parallel execution of the different iterations of a loop. Concurrent program-
ming languages include SR [Andrews and Olsson, 1993], Linda [Carriero and Gelenter, 
1989], and High Performance Fortran [Adams and others, 1997], Concurrent program-
ming is treated in Chapter 17. 

Correctness Program correctness is a subject that, until recently, has had only 
academic interest. However, newer languages and language features are evolving that 
support the design of provably correct programs in a variety of application domains. 
A program is correct if it satisfies its formal specification for all its possible inputs. 
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Proof of correctness is a complex subject, but language tools for formal treatment of 
conectness by programmers are now becoming available. For instance, the Spark/ Ada 
system [Barnes, 2003] and the Java Modeling Language [Leavens et al,, 1998] provide 
good examples. We introduce the topic of program corrrectness in Chapter 18. 

L4 A BRIEF HISTORY 
The first programming languages were the machine and assembly languages of the 
earliest computers, beginning in the 1940s. Hundreds of programming languages and 
dialects have been developed since that time. Most have had a limited life span and utility, 
while a few have enjoyed widespread success in one or more application domains. Many 
have played an impm1ant role in influencing the design of future languages. 

A snapshot of the historical development of several influential programming lan-
guages appears in Figure 1.2. While it is surely not complete, Figure 1.2 identifies some 
of the most influential events and trends. Each arrow in Figure 1.2 indicates a significant 
design influence from an older language to a successor. 

The 1950s marked the beginning of the age of "higher-order languages" (HOLs 
for short). A HOL distinguishes itself from a machine or assembly language because 
its programming style is independent of any particular machine architecture. The first 
higher-order languages were Fortran, Cobol, Algol, and Lisp. Both Fortran and Cobol 
have survived and evolved greatly since their emergence in the late 1950s. These lan-
guages built a large following and carry with them an enormous body of legacy code 
that today's programmers maintain. On the other hand, Lisp has substantially declined 
in use and Algol has disappeared altogether. 

However, the innovative designs of these early languages have had powetiUI influ-
ence on their successors. For example, Fortran's demonstration that algebraic notation 
could be translated to efficient code is now taken for granted, as are Cobol's introduction 
of the record struch1re, Pascal's design for one-pass compiling, and Algol's demonstra-
tion that a linguistic grammar could formally define its syntax. 

Perhaps the greatest motivator for the development of programming languages over 
the last several decades is the rapidly evolving demand for computing power and new 
applications by large and diverse communities of users. The following user communities 
can claim a major stake in the programming language landscape: 

• Artificial intelligence 
• Education 
• Science and engineering 
• Information systems 
• Systems and networks 
• World Wide Web 

The computational problem domains of these communities are all different, and so are the 
major programming languages that developed around them. Below we sketch the major 
computational goals and language designs that have served each of these communities. 

Artificial Intelligence The artificial intelligence programming community has 
been active since the early 1960s. This community is concerned about developing 
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programs that model human intelligent behavior, logical deduction, and cognition. Sym-
bol manipulation, functional expressions, and the design of logical proof systems have 
been central goals in this ongoing effort. 

The paradigms of functional programming and logic programming have evolved 
largely through the efforts of miificial intelligence programmers. Prominent functional 
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programming languages over the years include Lisp, Scheme, ML, and HaskelL The 
prominent logic programming languages include Pro log and CLP. 

The first AI language, Lisp (an acronym for "List Processor"), was designed by John 
McCarthy in 1960. Figure 1.2 suggests that Lisp was dominant in early years and has 
become less dominant in recent years. However, Lisp's core features have motivated the 
development of more recent languages such as Scheme, ML, and Haskell. The strong 
relationship between Lisp and the lambda calculus (a formalism for modeling the nature 
of mathematical functions) provides a firm mathematical basis for the later evolution of 
these successors. The lambda calculus and its relationship with functional languages are 
explained more fully in Chapter 14. 

In the logic programming only one language, Prolog, has been the major player, 
and Prolog has had little influence on the design of languages in other application areas. 

Education In the 1960s and 1970s, several key languages were designed with a 
primary goal of teaching students about programming. For example, Basic was designed 
in the 1960s by John Kemeny to facilitate the learning of progrmmning through time 
sharing, an architecture in which a single computer is directly connected to several 
terminals at one time. Each tenninal user shares time on the computer by receiving a 
small "time slice" of computational power on a regular basis. Basic has enjoyed great 
popularity over the years, especially as a teaching language in secondary schools and 
college-level science programs. 

The language Pascal, a derivative of Algol, was designed in the 1970s for the purpose 
of teaching programming. Pascal served for several years as the main teaching language 
in college-level computer science curricula. 

During the last decade, these languages have been largely replaced in educational 
programs by such "industrial strength" languages as C, C++, and Java. This change 
has both benefits and liabilities. On the one hand, learning an industrial strength lan-
guage provides graduates with a programming tool that they can use immediately when 
they enter the computing profession. On the other hand, such a language is inher-
ently more complex and cumbersome to leam as a first language in undergraduate 
course work. 

The recent emergence of Python may provide a vehicle through which introductory 
computer science courses can return to simplicity and concentrate again on teaching first 
principles. For example, Python has a more transparent syntax and semantics, which 
makes it more amenable to mastery by a novice than any of its industrial strength alter-
natives. Moreover, introductory courses using Python seem to introduce a richer variety 
of computer science topics courses using C, C++. or Java. 

Science and Engineering The scientific and engineering programming commu-
nity played a major role in the early history of computing, and it continues to play a 
major role today. The first programs were written in the 1940s to predict the trajectories 
of ballistics during World War II, using the well-worn physics formulae that characterize 
bodies in motion. These programs were first written in machine and assembly language 
by specially trained mathematicians. 

A major driving force behind scientific and engineering applications throughout their 
history is the need to obtain as much processing power as possible. The processing power 
oftoday's supercomputers is measured in teraflops (trillions of floating point operations 
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per second), and the current leader runs at a speed of 280 teraflops under the standard 
performance benchmark called LINPAK (see www.topSOO.org for more information). 
Many of today 's scientific and engineering applications are models of complex natural 
systems in fields like bioinformatics and the earth and atmospheric sciences. 

The first scientific programming language, Fortran I, was designed by John Backus 
at IBM in 1954 [Backus and eta!., 1954]. The acronym "Fortran" is an abbreviation for 
"Formula Translator." Fortran is probably the most widely used scientific programming 
language today. 

Early versions of Fortran had many problems, however. The most difficult prob-
lem was that of the same Fortran program ran differently on different 
machines, or else would not run at alL These problems gave rise to several new effmts. 
One such effort produced the language Algol, short for "Algorithmic Language," which 
was designed by an international committee in 1959. Algol's principal design goal was 
to provide a better-defined language than Fortran for both the computation and the pub-
lication of scientific and mathematical algorithms. 

Algol was miginally named the "lnternational Algebraic Language" (IAL). The 
language Jovial was designed by Jules Schwartz in the 1960s to refine and augment 
the features of IAL. This acronym stands for "Jules' Own Version of the International 
Algebraic Language.'' Jovial was widely used in US Department of Defense applications. 

Another interesting language called APL (short for "A Programming Language") 
[Iverson, 1962] was designed by Kenneth Iverson in the J 960s to facilitate the rapid 
programming of matrix algebraic and other mathematical computations. APL had an 
extended character set that included single-symbol mahix operators that could replace 
the tedium of writing for loops in most cases. The proliferation of such special symbols 
required the design of a specialized keyboard to facilitate the typing of APL programs. 
APL programs were known for their brevity; a matrix computation that required an 
explicit for loop in a conventional language needed only a single symbol in APL. 
APL's brevity was also its curse in many people's eyes. That is, most APL programs 
were so terse that they defied understanding by anyone but the most skilled technicians. 
The cost of supporting a specialized character set and stylized keyboard also contributed 
to APL's demise. 

To this day, scientific computing remains a central activity in the history of program-
ming and programming languages. Its problem domain is primarily concerned with 
performing complex calculations very fast and very accurately. The calculations are 
defined by mathematical models that represent scientific phenomena. They are primar-
ily implemented using the imperative programming paradigm. Modern programming 
languages that are widely used in the scientific programming arena include Fortran 90 
[Chamberland, 1995], C [Kernighan and Ritchie, J 988], C++ [Stroustrup, l 997], and 
High Pe1formance Fortran [Adams and others, J 997]. 

The more complex the scientific phenomena become, the greater the need for sophis-
ticated, highly parallel computers and programming languages. Thus, concurrent pro-
gramming is strongly motivated by the needs of such scientific applications as modeling 
weather systems and ocean flow. Some languages, like High Pelformancc Fortran, sup-
port concunent programming by adding features to a widely used base language (e.g., 
Fortran). Others, like SR and Occam, arc designed specifically to support concurrent 
programming. General purpose languages, like Java, support concurrency as just one of 
their many design goals. 
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Information Systems Programs designed for use by institutions to manage their 
information systems are probably the most prolific in the world. Corporations realized 
in the 1950s that the use of computers could greatly reduce their record-keeping tedium 
and improve the accuracy and reliability of what they could accomplish. Information 
systems found in corporations include the payroll system, the accounting system, the 
online sales and marketing systems, the inventory and manufacturing systems, and so 
forth. Such systems are characterized by the need to process large amounts of data (often 
organized into so-called databases), but require relatively simple transformations on the 
data as it is being processed. 

Traditionally, information systems have been developed in programming languages 
like Cobol and SQL. Cobol was first designed in the late 1950s by a group of industry 
representatives who wanted to develop a language that would be portable across a vari-
ety of different machine architectures. Cobol stands for "Common Business Oriented 
Language," uses English as the basis for its syntax, and supports an imperative program-
ming style. 

Cobol programs arc constructed out of clauses, sentences, and paragraphs, and 
generally tend to be more wordy than comparable programs in other languages. The aim 
here was to define a language that would be easy for programmers to assimilate. Whether 
or not that aim was ever reached is still open for discussion. Nevertheless, Cobol quickly 
became, and still remains the most widely used programming language for information 
systems applications. 

By contrast, SQL [Pratt, 1990] emerged iu the 1980s as a declarative programming 
tool for database specification, report generation, and information retrieval. SQL stands 
for "Structured Query Language" and is the predominant language used for specifying 
and retrieving information from relational databases. The relational database model 
is widely used, in part because of its strong mathematical underpinnings in relational 
algebra. 

More recently, businesses have developed a wide range of electronic commerce 
applications. These applications often use a "client-server" model for program design, 
where the program interacts with users at remote sites and provides simultaneous access 
to a shared database. A good example of this model is an online book ordering system, in 
which the database reflects the company's inventory of books and the interaction helps 
the user through the database search, book selection, and ordering process. Event-driven 
programming is essential in these applications, and programmers combine languages 
like Java, Perl, Python and SQL to implement them. 

Systems and Networks Systems programmers design and maintain the basic 
software that runs system components, network software, program-
ming language compilers and de buggers, vi1iual machines and interpreters, and real time 
and embedded systems (in cell phones, ATMs, aircraft, etc.). These types of software are 
closely tied with the architectures of specific machines, like the Intel/AMD x86 and the 
Apple/Motorola/IBM PowerPC. 

Most of these programs are w1itten in C, which allows programmers to get very 
close to the machine language level. Systems programming is typically done using 
the imperative design paradigm. However, systems programmers must also deal with 
concurrent and event-driven prograrruning, and they also have special concerns for 
program correctness as well. 
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Thus, the primary example of a systems programming language is C, designed in 
the early 1970s in part to support the coding of the Unix operating system. In fact, about 
95 percent of the code of the Unix system is written in C. C++ was designed by Bjame 
Stroustmp in the 1980s as an extension of C to provide new features that would support 
object-miented programming. 

The programming language Ada is named after Ada Lovelace, who is believed 
to have been the first computer programmer. In the early 1800s, she worked with the 
computer inventor Charles Babbage. The development of Ada was funded by the US 
Department of Defense, whose original goal was to have a single language that would 
support all DoD applications, especially command and control and embedded systems 
applications. While Ada never achieved this particular goal, its design has some notable 
features. Today, Ada provides a robust host upon which the Spark compiler provides 
tools to support program conectness. 

Scripting languages are widely used today for a variety of systems tasks. For example, 
an awk program can be designed quickly to check a password .file in a Unix machine for 
consistency. Some ofthe primary scripting languages are awk [Kernighan and Pike, 1984], 
Perl [Wallet al., 1996bi, Tcl/Tk [Ousterhout, 1994], and Python [Lutz, 2001]. We treat 
scripting languages in Chapter 12, where Perl programming is explored in some detaiL 

World Wide Web The most dynamic area for new programming applications is 
the Inte1net, which is the enabling vehicle for electronic commerce and a wide range of 
applications in academia, government, and industry. The notion of Web-centric comput-
ing, and hence Web-centric programming, is motivated by an interactive model, in which 
a program remains continuously active waiting for the next event to occur, responding 
to that event, and returning to its continuously active state. 

Programming languages that suppm1 Web-centric computing use event-driven pro-
gramming, which encourages system-user interaction. Web-centric computing also uses 
the object-oriented paradigm, since various entities that appear on the user's screen are 
most naturally modeled as objects that send and receive messages. Programming lan-
guages that support Web-centric computing include Perl, PHP [Hughes, 200 II, Visual 
Basic, Java, and Python. 

1.5 ON LANGUAGE DESIGN 
Programming language design is an enormous challenge. Language designers are the 
people who create a language medium that enables programmers to solve complex prob-
lems. To achieve this goal, designers must work within several practical constraints 
and adopt specific goals which combine to provide focus to this challenge. This section 
provides an overview of these design constraints and goals. 

1.5. 1 Design Constraints 
The following elements of computational settings provide major constraints for language 
designers. 

• Architecture 
• Technical setting 
• Standards 

Legacy systems 
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Architecture Programming languages are designed for computers. This fact is both 
a blessing and a curse to language designers. It is a blessing because a well-designed and 
implemented language can greatly enhance the utility of the computer in an application 
domain. It is a curse because most computer designs over the past several decades 
have been bound by the architecture ideas of the classic von Neumann-Ecke1t model 
discussed above. Many languages, like Fortran, Cobol and C, are well-matched with 
that architecture, while others, like Lisp, are not. 

For a few years, it became attractive to consider the idea of computer architecture 
as a by-product of language desigu, rather than as a precursor. In the 1960s, Burroughs 
designed the B5500, which had a stack architecture particularly suited to running Algol 
programs. Another effort produced the genre of Lisp machines that emerged in the 
early 1980s. These machines were configured so that Lisp programs would run effi-
ciently on them, and they enjoyed a degree of success for a few years. However, Lisp 
machine architectures were eclipsed in the late 1980s by the advent of Reduced Instruc-
tion Set Computer (RISC) architectures, on which Lisp programs could be implemented 
efficiently. 

So as we consider the virtues of various language design choices, we are always 
constrained by the need to implement the language efficiently and effectively within 
the constraints imposed by today 's variations of the classical von Neumann model. The 
notion that a good language design can lead to a radically new and commercially viable 
computer architecture is probably not in the cards. 

Technical Setting Not only are language designs constrained by the limits of com-
puter architectures, they must also satisfy other constraints imposed by the technical 
setting in which they are used: the application area, the operating system, Integrated 
Development Environment (IDE), the network, and the other preferences of a particular 
programming community. For example, Fortran is implemented on certain platforms by 
different compilers to suit the needs of scientific programmers. These programmers work 
in various professions that use their own software design styles, tools, and (above all) 
their own natural languages for communication among themselves. This larger picture 
of the complex setting for language design is summarized in Figure 1.3. 

Some languages are intentionally more general-purpose in their design, aiming to 
serve the interests of a wide range of applications. For instance, Ada [The Department of 
Defense, 1983] was designed to be useful for all applications supported by the Defense 
Department, while Cobol [Brown, 1977] was designed to support all business-oriented 
applications. While Cobol was moderately successful in its goal, Ada has been far less 
successful. 

Other languages are designed to be more special-purpose in nature. For instance, 
Pro log [Clocksin and Mellish, 1997] was designed to serve the nanow interests of natural 
language processing, theorem proving, and expert systems. C was designed primarily to 
support the interests of systems programming, although it has since been adopted by a 
broader range of applications. And Spark/Ada and JML were designed, respectively, to 
support the formal proof of correctness of Ada and Java programs. 

Standards When a programming language receives wide enough usage among pro-
grammers, the process of standardization usually begins. That is, an effort is made to 
define a machine-independent standard definition of the language to which all of its 

! 
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implementors must adhere. Language standardization generally stabilizes the language 
across different platforms and programming groups, making program portability feasible. 

The two major organizations that oversee and maintain standards for programming 
languages are the American National Standards Institute (ANSI) and the International 
Standards Organization (ISO). Several languages have been standardized over the years 
since the language standardization process began. Some of these, along with their most 
recent dates of standardization, are: 

ANSI/ISO Cobol (2002) 

ISO Fortran (2004) 

ISO Haskell ( 1998) 

ISO Prolog (2000) 

ANSI/ISO C (1999) 

ANSI/ISO C++ (2003) 

ANSI/ISO Ada (2005) 

ANSI Smalltalk (2002) 

ISO Pascal ( 1990) 

The language standara1zation process is complex and time-consuming, with a long 
period of community involvement and usually a voluminous definition of the standard 
language as its outcome. 

Standardization of programming languages has been accompanied by the standard-
ization of character sets (e.g .• the ASCII and UNICODE sets) and libraries (e.g., the 
C++ Standard Template Library) that directly support programming activities. 

The value of standardization to the community is that software and hardware design-
ers play a role in the process and commit their implementations of compilers and 
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interpreters to conform to the standard. Such conformity is essential to maintain porta-
bility of programs across different. compilers and hardware platfonns. 

Some have argued language standardization is a negative influence because it 
inhibits innovation in language design. That is, standard versions of languages tend 
to last for long periods of time, thus perpetuating the life of the poor features alongside 
that of the most valuable features. However, ISO and ANSI standards are reviewed every 
five years, which provides a modest buffer against prolonged obsolescence. 

More information about specific language standards and the standardization process 
itself can be found at the websites www.ansi.org and www.iso.org. 

Legacy Systems It is well-known that the great majority of a programmer's time 
is spent maintaining legat'Y systems. Such systems are those software a1tifacts that were 
designed and implemented by former, programming staff, but are maintained and updated 
by current staff. The largest body of code for legacy systems is probably written in Cobol, 
the most dominant programming language for information systems during the last four 
decades. 

In order to support the maintenance of legacy code, updated and improved versions 
of old languages must be backward compatible with their predecessors. That is, old 
programs must continue to compile and run when new compilers are developed for the 
updated version. Thus, all syntactic and semantic features, even the ones that are less 
desirable from an aesthetic point of view, cannot be thrown out without dis1upting the 
integrity of legacy code. 

For this reason, older programming languages have become overburdened with 
features as new versions emerge; languages rarely become more compact as they evolve. 
This is especially true for Fmtran, Cobol, and C++, which was designed as a true 
extension of C in order to maintain backward compatibility with legacy code. 

The design of Java, although a lot of its features are reminiscent of C++, departed 
from this tradition. As a central theme, Java designers wanted to free their new language 
from having to support the less desirable features of C++. so they simply cut them 
out. The result was a more streamlined language, at least temporarily. That is, recent 
versions of Java have added many new features without removing a comparably large 
set of obsolete features. Perhaps it is inevitable that, as any language matures, it natu-
rally becomes more feature-burdened in order to address the increasing demands of its 
application domain. 

1.5.2 Outcomes and Goals 
In light of these requirements, we are led to ask two impmtant questions: 

1 How does a programming language emerge and become successful? 
2 What key characteristics make an ideal programming language? 

Looking briefly at the past, we first observe that some successful programming lan-
guages were designed by individuals, others were designed by industry-wide committees, 
and still others were the product of strong advocacy by their corporate sponsors. For 
instance, Lisp and C++ were designed primarily by individuals (John McCarthy and 
Bjarne Stroustrup, respectively), while the languages Algol, Cobol, and Ada were 

............................................ .. 
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designed by committees. 1 PLII, Java, and C# are the products of their corporate sponsors 
(IBM, Sun, and Microsoft, respectively). So it's not clear that the design process-
individual, committee, or corporate sponsorship-has much overarching influence on 
the success of a language design. 

Since this study aims to prepare readers to evaluate and compare programming 
languages in general, it is important to have a small set of key characteristics by which 
you can do this. We shall call these design goals, since they have served as effective 
measures of successful language designs over the years: 

• Simplicity and readability 
• Clarity about binding 

• Reliability 

• Support 
• Abstraction 

• Orthogonality 

• Efficient implementation 

Simplicity and Readability Programs should be easy to write. They should also 
be intelligible and easy to read by the average programmer. An ideal programming 
language should thus supp011 writability and readability. Moreover, it should be easy to 
learn and to teach. 

Some languages, like Basic, Algol, and Pascal, were intentionally designed to facil-
itate clarity of expression. Basic, for instance, had a very small instmction set Algol 
60 had a "publication language" which provided a standard fmmat for typesetting pro-
grams that appeared in published journal articles. Pascal was explicitly designed as 
a teaching language, with features that facilitated the use of stmctured programming 
principles. 

Other languages were designed to minimize either the total number of keystrokes 
needed to express an algorithm or the amount of storage that the compiler would require. 
Surely, the designers of APL and C valued these economies. 

Clarity About Binding A language element is hound to a property at the time 
that property is defined for it. A good language design should be very clear about when 
the principal binding time for each element to its properties occurs. Here are the major 
binding times. 

• Language definition time: When the language is defined, basic data types are 
bound to special tags, called reserved words, that represent them. For example, 
integers are bound to the identifier i nt, and real numbers are bound to float in 
the language C. 

• Language implementation time: When the compiler or interpreter for the language 
is written, values are bound to machine representations. For example, the size of 
an i nt value inC is determined at language implementation time. 

l. In the case of Ada, the design process also had an element of competing designs 
were evaluated, and Ada emerged as the most suitable language to meet the Defense Department's needs. 
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• Program writing time: When programs are written in some languages, variable 
names are bound to types, which remain associated with those names throughout 
the run of the program. For instance, a variable can be bound to its type at the 
time it is declared, as in the declaration 

int 

which binds the variable x to the type i nt. 
• Compile time: When programs are compiled, program statements and expressions 

are bound to equivalent machine language instruction sequences. 
• Program load time: When the machine code is loaded, the static variables are 

assigned to fixed memory addresses, the run-time stack is allocated to a block of 
memory, and so is the machine code itself. 

• Program run time: When programs are running, variables are bound to values, as 
in the execution of the assignment x = 3. 

Sometimes, an element can be bound to a property at any one of a number of 
alternative times in this continuum. For example, the association of a value with a 
constant may be done either at program compile/load time or at the beginning of run 
time. When such choices are possible, the notion of early binding means simply that 
an element is bound to a property as early as possible (rather than later) in this time 
continuum. Late binding means to delay binding until the last possible opportunity. 

As we shan see in Chapter 4, early binding leads to better error detection and is 
usually less costly. However, late binding leads to greater programming flexibility (as 
illustrated in Chapter 14). In general, a language design must take all these alternatives 
into account, and decisions about binding are ultimately made by the language designer. 

Reliability Does the program behave the same way every time it is run with the 
same input data? Does it behave the same way when it is run on different platforms? 
Can its behavior be independently specified in a way that would encourage its formal 
(or informal) verification? 

Especial1y pertinent to these questions is the need to design appropriate exception 
handling mechanisms into the language. Moreover, languages that restrict aliasing and 
memory leaks, support strong typing, have well-defined syntax and semantics, and sup-
port program verification and validation would have an edge in this category. 

Support A good programming language should be easily accessable by someone 
who wants to learn it and install it on his/her own computer. Ideally, its compilers should 
be in the public domain, rather than being the prope11y of a corporation and costly to 
obtain. The language should be implemented on multiple platforms. Courses, textbooks, 
tutmials, and a wide base of people familiar with the language are all assets that help 
preserve and extend-the vitality of a language. 

Questions related to cost may be of more concern to individual programmers and 
students, rather than to corporate or government employees whose software costs are 
generally covered by their jobs. The history of programming languages has seen success 
on both sides. For instance, C, C++, and Java are nonproprietary languages, available 
in the public domain for a wide variety of platforms. On the other hand, C# and Eiffel are 
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vendor-supported languages whose use is constrained by their cost and the platforms/ 
IDEs on which they are implemented. 

Abstraction Abstraction is a fundamental aspect of the program design process. Pro-
grammers spend a lot of time building abstractions, both data abstractions and procedural 
abstractions, to exploit the reuse of code and avoid reinventing it. A good programming 
language supports data and procedural abstraction so well that it is a preferred design 
tool in most applications. 

Libraries that accompany modern programming languages attest to the accumulated 
experience of programmers in building abstractions. For example, Java's class libraries 
contain implementations of basic data structures (e.g., vectors and stacks) that, in earlier 
languages, had to be explicitly designed by programmers themselves. How often have 
we reinvented a sorting algorithm or a linked list data structure that has probably been 
implemented thousands of times before? 

Orthogonality A language is said to be orthogonal if its statements and features are 
built upon a small, mutually independent set of primitive operations. The more orthogonal 
a language, the fewer exceptional rules are needed for writing correct programs. Thus, 
programs in an orthogonal language often tend to be simpler and clearer than those in a 
non-orthogonallanguage. 

As an example of orthogonality, consider the passing of arguments in a function call. 
A fully orthogonal language allows any type of object, including a function definition, to 
be passed as an argument. We shall see examples of this in our discussion of functional 
programming in Chapter 14. 

Other languages restrict the types of objects that can be passed in a call. For example, 
most imperative languages do not allow function definitions to be passed as arguments, 
and therefore are not orthogonal in this regard. 

Orthogonality tends to correlate with conceptual simplicity, since the programmer 
doesn't need to keep a lot of exceptional rules in her head. Alan Perlis put it this way: 

It is better to have 100 functions operate on one data structure than 10 functions on 
10 data structures. 

On the other hand, non-orthogonality often correlates with efficiency because its excep-
tional rules eliminate programming options that would be time- or space-consuming. 

Efficient Implementation A language's features and constructs should permit a 
practical and efficient implementation on contemporary platforms. 

For a counterexample,Algol68 was an elegant language design, but its specifications 
were so complex that it was (nearly) impossible to implement effectively. Early versions 
of Ada were criticized for their inefficient run-time characteristics since Ada was designed 
in part to support programs that run in "real time." Programs embedded in systems like 
airplanes had to respond immediately to a sudden change in input values, .like wind 
speed. Ada programs stood at the intersection of the sensors that provided the readings 
and the mechanisms that were to respond to them. Early implementations of Ada fell far 
short of these ambitious performance goals. The harshest critics of Ada's performance 
were known to utter, "Well, there's 'real time' and then there's 'Ada time'!" 
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Initial implementations of Java had been criticized on this same basis, although 
recent refinements to Sun's Java compiling system have improved its run-time 
performance. 

1.6 COMPILERS AND VIRTUAL MACHINES 
An implementation of a programming language requires that programs in the language 
be analyzed, and then translated into a form that can be either: 

1 Run by a computer (i.e., a "real machine"), or 
2 Run by an interpreter (i.e., a piece of software that simulates a "virtual machine" 

and runs on a real machine). 

Translation of the first kind is often called compiling, while translation of the second is 
called interpreting. 

Compilers The compiling process translates a source program into the language of 
a computer. Later, the resulting machine code can be run on that computer. This process 
is pictured in Figure 1.4. For example, Fortran, Cobol, C, and C++ are typical compiled 
languages. 

The five stages of the compiling process itself are lexical analysis, syntactical anal-
ysis, type checking, code optimization, and code generation. The first three stages are 
conce1ned with finding and repmting errors to the programmer. The last two stages are 
concerned with generating efficient machine code to run on the target computer. 

A compiled program's machine code combines with its input to run in a separate step 
that follows compilation. Run-time errors are generally traceable to the source program 
through the use of a debugger. 

Source 
program 

Lexical Syntactic Type Code 1--+ Code 
analyzer r- analyzer r- checker - optimizer generator 

Machine 
code 

(Input Computer 

t 
Output J 

I Figure 1.4 The Compile-and-Run Process 

I -----------------llllllllllllllllll-111111111111111111111111111111-



1.6 Compilers and Virtual Machines 19 

1 
Source 
program 

Lexical 
analyzer 

Syntactic 
analyzer 

Type 
checker 
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We shall have some opportunities to explore the first three stages of compiling in 
Chapters 3 and 6. However, the subjects of code generation and optimization are typically 
covered in a compiler course and will not be addressed in this text. 

Virtual Machines and Interpreters Other languages are implemented using 
an interpretive process, as shown in Figure 1.5. Here, the source program is translated 
to an intermediary abstract form, which is then interpretively executed. Lisp and Prolog, 
for instance, are often implemented using interpreters (although compilers for these 
languages also exist). 

As Figure 1.5 suggests, the first three stages of a compiler also occur in an inter-
preter. However, the abstract representation of the program that comes out of these 
three stages becomes the subject of execution by an interpreter. The interpreter itself 
is a program that executes the steps of the abstract program while running on a real 
machine. The interpreter is usually written in a language distinct from the language being 
interpreted. 

Sometimes a language is designed so that the compiler is written only once, targeting 
the code for an abstract virtual machine, and then that virtual machine is implemented 
by an interpreter on each of the different real machines of the day. This is the case for 
Java, whose abstract machine was called the Java Virtual Machine (JVM) [Lindholm 
and Yellin, 19971. When making this choice, the Java language designers gave up a bit 
of efficiency (since interpreted code generally requires more resources than machine 
code) in favor of flexibility and portability. That is, any change in the Java language 
specification can be implemented by altering a single compiler rather than a family of 
compilers. 

A major advantage of compiling over interpreting is that the run-time performance 
of a compiled program is usually more efficient (in time and space) than its interpreted 
perfonnance. On the other hand, the quality of interaction with the system that the 
programmer enjoys can be better with an interpreter than with a compiler. Since program 
development is interactive, individual program segments (functions) can be tested as they 
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are designed, rather than waiting for the entire program in which they are to be embedded 
to be complete. 2 

Later versions of Java have gained back some of this efficiency loss by embedding 
a just-in-time (JIT) compiler into the JVM. This feature enables the JVM byte code to be 
translated on-the-fly into the native machine code of the host machine before it is executed. 

The virtual machine concept is valuable for other reasons that can offset its inherent 
loss of efficiency. For example, it is expedient to implement a language and its inter-
preter using an existing virtual machine for the purpose of design or experimentation 
with the language itself. Similarly, it is useful to study language design foundations and 
paradigms by using an available interpreter that facilitates experimentation and evalua-
tion of programs in that language. 

The viltual machine concept has an immediate practical value in this study. That 
is, you will have access to an interpreter for a small C subset called Clite. The use of 
Clite facilitates much of our work because it eliminates machine-specific details that 
can often hide the principles and other ideas beiog taught. For instance, in the study of 
language syntax, you can exercise the Clite interpreter to explore the syntactic structure 
of different language elements, like arithmetic expressions and loops. 

1.7SUMMARY 
The study of programming languages includes principles, paradigms, and special topics. 
The principles are studied both conceptually and in a hands-on way, via the Clite 
interpreter. 

Mastery of one or more new paradigms-imperative, object-oriented, functional, or 
logic programming-is also important to this study. This activity helps us to appreciate 
a broader range of computing applications and discover approaches to problem solving 
with which we are not yet familiar. 

Investigation of one or more special topics-event-handling, concurrency, or 
correctness-allows us to look carefully at three particular language design features and 
the programming challenges that surround their effective utilization. 

In all, we hope that this study will help broaden your view and your technical skills 
across the wide landscape of programming languages. In particular, you should expect 
to acquire: 

• An appreciation for the use of hands-on tools to examine the principles of language 
design. 

• An appreciation for the value of different programming paradigms that are particularly 
powetful in specific application domains. 

• Laboratory expedences with new languages and design tools, both for testing the 
principles and for mastering new problem solving techniques. 

To support this study, you may occasionally visit the book's website. All the pro-
grams that appear in the book can be downloaded from that website, along with other 
pedagogical and learning aids. 

2. However, the development of modern debuggers and IDEs for compiled languages have substantially 
neutralized this advantage in recent years. 
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EXERCISES 
1.1 An online Web search on "programming languages" wi11 yield links to major information sources 

for all the major programming languages, past and present. For each of the following languages, use 
the Web to learn something about it. Write, in your own words, a brief (one paragraph) summary of 
its distinguishing features, as well as its historical relationship with other languages that preceded 
or followed it. 
(a) Eiffel 
(b) Perl 
(c) Python 

1.2 Give an example statement in C, C++, or Java that is particularly unreadable. Rewrite that 
statement in a more readable style. For instance, have you ever seen the expression A[ i ++] in a 
CIC++ program? 

1.3 Unreadable code is not the exclusive province of C, C++, and Java. Consider the following 
strongly held opinions about the weaknesses of pmticular languages over the last four or more 
decades: 

It is practically impossible to teach good programming to students that have had a prior 
exposure to BASIC; as potential programmers they are mentally mutilated beyond hope of 
regeneration. E. Dijkstra 

The usc of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal 
offence. E. Dijkstra 

APL is a mistake, canied through to pelfection. It is the language of the future for the 
programming techniques of the past: it creates a new generation of coding bums. E. Dijkstra 

There does not now, nor will there ever exist, a programming language in which it is the least 
bit hard to write bad prQgrams. L. Flon 

(a) Dijkstra seems not to have much regard for Basic, Cobol, or APL. However, he did have a 
high regard for Algol and its successors. Do enough reading on the Web to determine what 
general features Algol possessed that would make it superior to languages like Basic, Cobol, 
and APL. 

(b) What does Flon mean by this last statement? Are programming languages inherently flawed? 
Or is he suggesting that programmers are inherently inept? Or is there a middle-ground 
interpretation? Explain. 

1.4 Give a feature of C, C++, or Java that illustrates orthogonality. Give a feature different from the 
one discussed in the text that illustrates non-orthogonality. 

1.5 Two different implementations of a language are incompatible if there are programs that run 
differently (give different results) under one implementation than under the other. After reading 
on the Web and in other sources about early versions of Fmtran, can you determine whether or not 
Fortran had incompatible versions? In what specific form (statement type, data type, etc.) did this 
incompatibility appear? What can be done to eliminate incompatibilities between two different 
implementations of a language? 

1.6 The standardization effort for the language C began in 1982 with an ANSI working group, and the 
first C standard was completed in 1989. This work was later accepted as an ISO standard in 1990 
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and has continued until the present day. Read enough on the Web to determine what significant 
changes have been made to the C standard since 1990. 

L7 Find the C++ standard on the Web. What is meant by nonconfornwnf when the standard discusses 
a language feature supported by a particular compiler? For the C++ compiler on your computer, 
are there nonconformant features? 

1.8 After learning what you can from the Java website java.snn.com and other sources, what can you 
say about the status of the Java standardization effort by ANSI and ISO at this time? 

1.9 Find the Python 2.4 version on the Web. What new features does this version add to Python 2.3? 
What old features of Python are eliminated by the newer version, if any? 

1.10 Compare two languages that you know using the goals for language design outlined in 
Section 1.5.2. For each goal, determine which of the two languages meets the goal better and 
justify your conclusion with an example. For instance, in comparing C and Java you could con-
clude that C has more efficient implementations because it compiles to native code rather than an 
interpreter. 


