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1 What is Functional Programming?

Programming is the process of describing the transformation of input values to corresponding output values.
Assuming that a program is deterministic (the same input will always produce the same output), this means
that a program acts like a function which maps the input values to output values. And when I use the term
function, I use it in the mathematical sense – i.e., as discussed in a course on discrete mathematics! It is
this fundamental characteristic of programming which is at the heart of the functional paradigm. Though
this functional characteristic is present in familiar languages such as Python and Java , it is in modern
functional programming languages that the functional paradigm is most thoroughly exploited.

What differentiates mathematical functions from those with which we are familiar in programming? In
mathematics when we write

f(x) = x2 − 3x+ 2

the independent variable x acts as a place holder for a value which is supplied. In the Java function

int poly (int x) {
// inefficient function definition for x^2 -3x +2

int y;

y = x*x;

return y - 3*x +2
}

the variable y represents not just a value, but also a location in memory where that value is stored, i.e.,
Java functions have local state, meaning memory locations to which new values can be assigned. This
idea of state does not exist for mathematical functions. Thus, in pure functional programming there are
no variables as such, only constants, parameters, and values. The following Java function behaves just as
the one above but is written in the functional style.

int poly (int x) {
// inefficient function definition for x^2 -3x +2

return x*x - 3*x +2
}

Some functional programming languages, such as the lisp-family of languages (scheme, common lisp, etc.)
and ML provide a functional environment, but allow for state in some situations: these are referred to
as impure functional languages. Languages such as Miranda and Haskell on the other hand, are called
pure functional languages because they make no provision for state. See Chapter 14 in Programming
Language Design Concepts by David Watt for a more extensive discussion of the characteristics of functional
programming languages.

Historically, one problem of functional programming languages has been that the execution time for a
functional program is considerably longer than an equivalent program written in an imperative language
such as C or Java. On the other hand, one of the main advantages of the functional paradigm is that
it allows for very (mathematically) precise function definitions. The result is that functional programs
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are considerably shorter and easier to prove correct than their imperative counterparts. For these rea-
sons, functional programming languages have been used as specification languages. A functional program
serves as an executable “wiring diagram”, and an imperative program is written to follow the functional
specification.

1.1 What is a Functional Program?

A functional programming language is one which implements the functional paradigm. A typical program
consists of a sequence of function definitions and an expression that references these definitions. Execution
of the program simply involves the evaluation of the expression. The expression, of course, coincides with
the main program or function in an imperative program. Since most functional programming languages are
interpreted, the user typically specifies a file containing function definitions and then interactively enters
an expression to be evaluated — the interpreter responds with the result of the evaluation. The file of
function definitions is what we will think of as constituting the functional program.

There are four important features of modern functional programming languages: higher-order functions,
true polymorphic functions, strong typing, and the use of lazy evaluation.

1. A higher-order function is one which takes other functions as parameters. These functions give the
programmer a powerful mechanism for elegant problem solutions. Higher-order functions are also
often reusable in other programs.

2. A polymorphic function is one whose definition is valid over a range of types. Thus, a function for
adding something to a list can be written independent of the type of the values on the list.

3. Strong typing in functional languages means that the type of every function can be determined before
expression evaluation. Since the programmer is encouraged (not required) to specify types for all
functions, the interpreter can compare its deduced type to the programmer’s specified type. If they
are not the same an error is given. Experience seems to indicate that when the programmer and
interpreter agree on the types of functions, the program is correct.

4. Lazy evaluation refers to the fact that the interpreter doesn’t evaluate a function parameter until it
is actually used. This has various advantages, including the ability to represent potentially infinite
data structures such as the set of natural numbers.

Other features which are peculiar to modern functional programming languages are algebraic types (rather
than pointers), function definitions using pattern matching, and the use of lists as the primary data
structure in problem solving.

1.2 A Functional Programming Environment

A functional programming environment is like a very fancy calculator, where the user gets to define the
functions which can be used. The functions are defined by writing descriptions into a text file. The
environment loads the specified file of functions definitions, verifying correct syntax and translating the
functions into a convenient internal form. The environment then allows the user to specify expressions
which should be evaluated. An expression, of course, must be written in terms of functions which the
interpreter knows about. Of course it is unreasonable to expect the user to define all functions which
will be used. Instead, each functional programming environment will somehow provide a collection of
pre-defined functions which are either automatically loaded when the environment is run or already built
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into the structure of the environment. Many interpreters have both characteristics. The most basic
functions, such as the arithmetic functions, are built in. Other commonly used functions are provided by
the environment as a standard startup file. This startup file has become known as a prelude.

1.3 Is Functional Programming Real Programming?

When dealing with different programming paradigms it is natural to ask the question “Is one paradigm
fundamentally more powerful than another?” If we compare the functional paradigm with the more familiar
imperative paradigm, the answer is no. If you can write a program in Java or Python, then you can write
an equivalent program in a functional language; and the reverse is true as well.

One of the most difficult aspect of programming in any language is input and output. In functional
programming, as you will see, non–interactive I/O is actually easier than with imperative languages.
Interactive I/O, on the other hand, is very difficult for pure functional programming languages (those
without state), much more so than imperative languages. But there are well defined techniques that make
interactive I/O feasible for functional programming. So it is important for you to remember as you go
through this tutorial, functional programming may seem a bit strange at first, but any program you have
written in Python or Java can also be written using the functional paradigm.

1.4 What is GHC?

Above I referred to Haskell as a functional programming language. This is not quite right. It is really
the definition of a family of functional languages — when that definition is actually implemented you get
a useful language. GHC is such an implementation, it stands for Glasgow Haskell Compiler – we say
that GHC implements the Haskell standard – it is developed by an active team of developers, the team
leader being Simon Peyton Jones. GHC has already played the role of a testbed for research activities
into various aspects of functional programming languages. While the Haskell standard has been around for
several years, it continues to be the primary vehicle for research into new programming language structures,
especially type systems. If you want to learn more about the Haskell research activities visit their web at
http://www.haskell.org.

First released in 1989, GHC continues to be developed actively. Versions of GHC now exist for almost
all popular operating systems. All versions are free and can be downloaded from the following address
http://www.haskell.org/hugs. The GHC interpreter will be fully described in the next few sections.

GHC has features that are standard in modern functional languages, including lazy evaluation, polymorphic
functions, pattern matching, algebraic types, higher-order functions, and strong typing.
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2 Using the GHC Interpreter

To start the GHC interpreter simply type ‘ghci’ at a unix prompt. Do so! You should see the following
displayed on the screen.

[myaccount@server path]$ GHCi, version 7.0.4: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude>

Though it is not mentioned in the startup information, a file called Prelude.hs is automatically loaded.
This is indicated by the ‘Prelude>’ prompt. This file is the basic library of pre-defined functions for
GHC and provides many function definitions intended to make programming easier. (You can find the file
online, you will see examples of function and type definitions. Be warned that the file contains features
which we will not be discussing in class.)
We have answered the first of the three essential questions for the use of any system:

• How do I get in?

• How do I get help?

• How do I get out?

The initial output from GHC tells us how to get help (that’s the first two taken care of). If you follow the
directions you should get the following list on your screen of all the system level commands understood by
GHC. (Notice that you must type ‘:?’ at the prompt, not just‘?’.)

Prelude> :?
LIST OF COMMANDS: Any command may be abbreviated to :c where
c is the first character in the full name.

:cd <dir> change directory to <dir>
:cmd <expr> run the commands returned by <expr>::IO String
:edit <file> edit file
:edit edit last module
:help, :? display this list of commands
:info [<name> ...] display information about the given names
:load [*]<module> ... load module(s) and their dependents
:module [+/-] [*]<mod> ... set the context for expression evaluation
:reload reload the current module set
:type <expr> show the type of <expr>
:!<command> run the shell command <command>
:quit exit GHCi

:set <option> ... set options
+t print type after evaluation

:show bindings show the current bindings made at the prompt
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Prelude>

OK! Now we can see the answer to the other question. To get out of GHC you just type ‘:quit’ (actually,
’:q’ works as well). Do so. You should see:

Prelude> :q
Leaving GHCi

The other commands listed by the help command will be introduced as we go along. Your use will most
likely be limited to the commands load, reload, type, and quit.

Before proceeding, we will take a quick look at the ‘set <options>’ command, since there is an option
we want to set. Restart GHC and at the prompt type ‘:set +t’ and you will observe that every time you
evaluate an expression it will also indictates the type of the expression. That is going to help us understand
the programs we write.

2.1 Setting Things Up

The common way to work with GHC is to have your editor window and GHCi session both open and then
just switch back and forth. If you edit and save a file, you then need to either :load (:l) the file again to
see the changes or :reload (:r) to bring in changes from all previously loaded files in GHC.

So that you do not have set the flags every time you run GHC, you can edit a configuration file .ghci at
the root of your home folder and add the following line to it.

:set +t

2.2 Simple calculations

Now that the important questions have been answered we can move on to the computational facilities
of the GHC interpreter. Using GHC is rather like using a high-level programmable calculator; once the
interpreter is loaded, the system prints a prompt ‘Prelude>’ and waits for you to enter an expression
(or a GHC command) and press the enter (Return) key. Once the input is complete, GHC evaluates the
expression and prints its value on the screen; it then returns to the original prompt and waits for the next
expression. Try some examples. At the prompt enter the expression ‘(2+3)*8’. (Notice that the expression
is not preceded by a colon.) When you press return the expression is evaluated by GHC and the result
‘40’ printed on the screen.

Prelude> (2+3)*8
40
it :: Integer

The extra bit of information printed on the last line indicates that the type of the expression is Integer.
This is the result of the :set +t we wrote in the .ghci file.

2.3 Arithmetic Expressions

Arithmetic expressions are handled in GHC much as you would expect, but not exactly. The operations
+, -, *, / are defined on both integer and floating point values (but not mixed!) and are used in the
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infix style. There are two other standard integer operations which are used not in infix style, but in prefix
style – this means that the operator is written first followed by its operands. The two operators are ‘div’
and ‘mod’. Enter the following expression:

3 + (div 10 3)

and you will see the following output.

Prelude> 3 + (div 10 3)
6
it :: Integer

Of course you may be the sort of person who just has to use infix notation (or just has to use prefix notation
– take your choice!). GHC has accommodated both styles. To turn a binary prefix operator into an infix
operator just put back-quote characters around it

Prelude> 10 ‘div‘ 3
3
it :: Integer

To turn a binary infix operator into a prefix operator surround it with a pair of parentheses.

Prelude> (+) 3 5
8
it :: Integer

A point about the Haskell functional notation. In most languages you have encountered, function appli-
cation requires that function arguments appear in a comma-separated list enclosed by parentheses. This
is not the Haskell style. Rather, a function’s arguments appear as a space-separated list and not enclosed
in any sort of bounding notation. This notation turns out to be very convenient and we will revisit this
discussion in future sections.

For now, it is up to you to experiment with the arithmetic expressions to find out what is legal and what
is not. Be sure to try some mixed mode arithmetic to see what happens.

To make this experimentation and future work more convenient, the interpreter provides a special identifier
it refering to the most recent expression typed into GHC. Here is a sequence of expressions to enter at
the GHC prompt to see how this command works.

2 + 3
it -- this is the ‘‘repeat last expression’’ command
it + it
2 * it + 4

As an exercise for yourself, write down what expression replaces the it in each instance. The result
computed for each expression should help answer any questions.

2.4 Boolean and Conditional Expressions

In addition to integer and floating point numbers Haskell also provides the Boolean type along with all the
familiar operators which generate Boolean results. Try some of the following expressions in the interpreter
to see what it does.
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5 == (3 + 2)
(div 5 3) /= 2 -- this is the not-equal operator
(<) 3 5
(3 < 5) == (4 < 3)
(3 < 5) && (4 < 3)
(3 < 5) || (4 < 3)

Clearly, all kinds of combinations are possible. You might want to see what happens when you leave out
some of the parentheses, just to get an idea of how Haskell handles precedence.

Another very convenient type of expression borrowed from C is the conditional expression. This expression
looks a lot like the standard if...then...else statement but cast in the context of values rather than
statements. Here is an example.

Prelude> if (4 < 3) then 4 else 5
5
it :: Integer
Prelude> if (3 < 4) then 4 else 5
4
it :: Integer

2.5 Defining functions

Of course we aren’t using Haskell so that we can do slick computations like the ones above. We want to
use Haskell as a programming language. The thing you must remember is that Haskell only understands
functions and the application of a function to its arguments. If you think back to programs which you have
written, few will seem to fit into that mold. However, we will see that a functional language like Haskell
has all the flexibility and computational power of Python and Java.

First, remember that a Haskell program is a list of function definitions and an expression to be evaluated.
The way we do this in GHC is to create a file containing the function definitions, have the GHC system load
that file, and then enter interactively the expression(s) that we want to evaluate. Here is a first program
example.

The first step is to learn to define your own functions. We will start out simply. Open your editor and
enter the following lines.

This file contains the definition for the factorial function.

>fact :: Int -> Int -- this specifies the type of the function fact
>
>fact 0 = 1
>fact n = n * (fact (n-1))

There are three things to note here. First, the type specification for ‘fact’ matches the common mathe-
matical notation for functions. In this case the indication is that ‘fact’ takes one integer argument and
produces an integer result. This definition of factorial looks just like the definition you see in a math text
– fact is a function with domain int and range int.

Second, notice the natural use of recursion, which is the hallmark of any functional programming language.
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Finally notice carefully the six lines of the program – they illustrate a style of programming called literate
programming. In this style the roles of comment and program line are reversed – comments are free-form
and require no special notation, while program lines must begin with the greater than sign; a sequence
of program lines must also be preceded and followed by blank lines! This style makes creating a handin
file much easier. You can take your normal program file (with program lines starting with ‘>’) and freely
copy in program output or commentary.

Note: In order for literate programming set when you load a file, you must give the file a name
which ends .lhs: if you use the .hs ending the non-literate programming style will be assumed.

Now save the content of the editor in a file (say ‘labA.lhs’). This file contains what we will get used to
calling a Haskell program. Now you must make your GHC interpreter session aware of the program file
you have created. This is where the ‘load’ command comes in. If you have reproduced the above lines
accurately then the following should appear when you execute the indicated GHC command. [Note: The
two characters ’–’ mark the remainder of a line as a comment.]

Prelude> :load labA -- :load can be abbreviated to :l
[1 of 1] Compiling Main ( labA.lhs, interpreted )
Ok, modules loaded: Main.
*Main>

Notice that the prompt has changed to reflect that a new context has been loaded into GHC on top of the
standard prelude.

(In this example, if you have not reproduced the lines accurately you may see some error messages. Return
to the editor and double check what you have entered. After correcting any mistakes resave the file and
repeat the load procedure in GHC.) So now what is in the file labA.lhs should be integrated into GHC.
Let’s see. Determine the factorial for a few values using ‘fact’. If you try some appropriate (not very large)
values you should get an idea as to the range of Int supported by Haskell. Here are results that I got.

Main> fact 3
6
it :: Int
Main> fact 7
5040
it :: Int
Main> fact 10
3628800
it :: Int
Main>

Problem 1

1. Let’s try to integrate ‘fact’ into more complex computations. There are 10 ways to select 9 students
from a class of 10 (i.e., the are 10 ways to leave a student out!). But how many ways are there to
select 5 students from a class of 10? The answer is given by the general equation(

n

k

)
=

n!
k! ∗ (n− k)!
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Write an expression for
(10

5

)
, 10 choose 5, based on this equation and evaluate it in GHC. Remember!

The values we are working with are integers, so be sure to use div rather than ‘/’, as you would do
in Java.

2. Before we leave this example, re-edit your test file and answer the following questions (give complete
answers).

(a) Comment out the line defining ‘fact 0’, and re-save the file. Now re-load the file into the
GHC system and evaluate the expression ‘fact 4’. What happens? Why does it happen?
Correct the problem.

(b) Are the parentheses around fact (n - 1) necessary? How about around n - 1? Run appro-
priate tests to answer both these questions. Explain your answers.

3. Now lets try to make the choose expression a function! The choose function takes two integer
arguments n and k and returns the result of

(n
k

)
. When k is 0, the function should return the value 1.

Mimicking what you did for factorial function, add a definition to your test file for this function, load
the file, and evaluate the function at a couple of argument values.

4. What happens if you try to get the factorial of 50? What happens if you try to find
(50

5

)
?

5. There is another way to calculate the choose function that is more recursive.(
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)

Implement a function choose2 which implements the choose expression recursively (choose2 must be
defined recursively using choose2, as opposed to using choose.).

6. What happens if you try to run choose2 50 5? Same question for choose 50 5? Does it work?
Why does it take a while to provide a result?

7. One last thing for choose: comment out the type signature for the fact and choose functions. Does
choose2 50 5 work now? What about choose 50 5? Explain why?

8. Now lets try a new function. The Fibonacci function takes an integer argument n and returns the
sum of the (n − 1)st and (n − 2)nd Fibonacci numbers. For the arguments 0 and 1, the function
returns the value 1. Implement this function as fib in your current lab Haskell file. Verify that it is
correct by testing it on a few values and copying the results under the function implementation.

2.6 Conditional expressions

The two functions you defined above are examples of functions defined by cases. There are three alternative
mechanisms for implementing the functions. We will work with the factorial function in the following
development.
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2.6.1 if...then...else expressions

You are very familiar with the if statement from procedural languages such as Python and Java. In a
functional language this structure is used as part of an expression. Instead of giving alternative actions
to take, alternative values are specified. Thus, to define the function ‘fact’ using the if...then...else
expression we merely write

fact n = if n==0 then 1 else n*(fact (n-1))

Notice that the equality operator is ‘==’, just as in Java. This expression can be spread over more than
1 line as follows:

>fact n = if n==0
> then 1
> else n*(fact (n-1))

There are stringent rules governing the use of indentation, but we’ll save those for a later discussion.

Problem 2

Write a new definition for the fib, call it fibsel, making use of the if-then-else expression.
Add it to your file following the definition of fib. [Nesting the selection expressions should
work the way you expect.]

2.6.2 case expressions

Haskell also has a case expression which is similar to the Java select statement. Our factorial function
could be written using the case expression as follows:

>fact n = case n of
> 0 -> 1
> n -> n*(fact (n-1))

The components of the case expression are evaluated from top to bottom until one is found which matches
the argument value. So the value 1 is returned if the argument is 0, and ‘n*(fact (n-1))’ is returned in
every other case.

Problem 3

Write a new definition for the fib, call it fibcase, making use of the case expression. Add it
to your file following the definition of fibsel.
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2.6.3 guarded expressions

The third conditional expression is called a guarded expression. The ‘fact’ function is defined as follows
(it is really just a reformulation of the if...then...else syntax).

>fact n
> | n == 0 = 1
> | otherwise = n*(fact (n-1))

In this method each guard (the part between the ‘|’ and the ‘=’) is a Boolean expression. As we will see in
later examples, the guards do not have to be disjoint but they must be all inclusive - thus the use of the
‘otherwise’ guard. Try the ‘fib’ function using this method.

Problem 4

1. Write a function

grade :: Int -> Char

which converts a grade in the range from 0 to 100 to a letter according to the following:

Scores Grades

90 – 100 ’A’
80 – 89 ’B’
70 – 79 ’C’
60 – 69 ’D’
0 – 59 ’F’

Any other argument value should return ’E’, for error. Use the appropriate expression type for
implementing this (there’s really just one).

2. Write a function abs2 which determines the absolute value of an integer. Test it out. Notice that
when you use a negative number as an argument to the function you must enclose it in parentheses.
So use the following form.

abs2 (-5)

If you were to enter

abs2 -5

the interpreter would read the minus sign as a separate argument – i.e., it would think abs2 was
taking two arguments, the minus operation and the integer 5.
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3 Haskell Types

In the last section, you saw some basic features of the GHC interpreter and a very small bit of the Haskell
language. In this section, you will learn about various types in Haskell including simple types, function
types, and the important list and tuple types. You will also learn about more language features of Haskell
and how to use them.

3.1 Simple Types

There are four simple types: Boolean (Bool), character (Char), integer (Int), and real (Float) [the name
for the type is in parentheses]. Each of these types has the usual array of associated functions, which are
summarized in Figure 1. Notice that in Haskell, all function names must begin with a lower-case letter
—- all type names (and type constructor names) must begin with an upper-case letter (for example, the
Boolean values are True and False).

A bit of experimentation on your part (by trying out various expressions in the interpreter) should give
you the basic idea of how these familiar functions work. One thing to mention about Figure 1, the last
entry labeled ‘others’, shows the usual comparison functions are defined. The ‘a’ in the type definition
part is in place of each of the types mentioned above. This saves having to write a separate definition for
each individual type.

3.2 Function Types

In a language such as C/C++ or Java the definition of function includes the name of the function, a list of
parameters and their types, and the type of the value to be returned by the function. In Haskell, we have
the same requirements, but the syntax is quite different and derived from (hopefully) familiar mathematical
notation. In mathematics, we are used to writing

f : A −→ B

to specify a function named ‘f’ which associates with each value in the set ‘A’ a unique value from the
set ‘B’ – ‘f’ takes a value from ‘A’ and returns a value from ‘B’. This notation is used in Haskell, and we
have seen it above. In previous examples, however, we have dealt with functions with only one parameter.
How do we extend the notation to functions on more than one parameter? The function ‘gcd’ (greatest
common divisor), for example, takes two integer parameters and returns an integer value. To specify this
in Haskell, we write

gcd :: Int -> Int -> Int

The first Int is the type of the first parameter, the second Int is the type of the second parameter, and
the third Int is the type of the value returned. This scheme generalizes in the obvious way to functions
of more than two parameters. We will see examples of this notation throughout the rest of this tutorial.
Two things to remember: the very last type name is always the type of the return value, and the number
of parameters is one less than the number of types in the definition (or just the number of ->’s).

Problem 5

Add to your test file the definition of a function ‘hyp’ that takes two integer values (representing
the lengths of the sides of a right triangle) and returns a real value representing the length of
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the hypotenuse for the triangle (assume the integer values are non-negative). This function
requires the use of fromIntegral (see Figure 11) to convert from the integer parameters to
Float values. Modify the definition so that for negative values in either of the parameters the
value ‘0’ is returned?

Be sure to include the type specification for the new function.

Bool && :: Bool -> Bool -> Bool -- infix and
|| :: Bool -> Bool -> Bool -- infix or
not :: Bool -> Bool

Char ord :: Char -> Int
chr :: Int -> Char
isAscii, isControl,
isPrint, isSpace :: Char -> Bool
toUpper, toLower :: Char -> Char

Int div, mod, quot, rem :: Int -> Int -> Int
+, -, * :: Int -> Int -> Int
^ :: Int -> Int -> Int-- exponentiation
even, odd :: Int -> Int
gcd, lcm :: Int -> Int -> Int
even, odd :: Int -> Int
fromIntegral :: Int -> Float

Float +, -, *, / :: Float -> Float -> Float
^ :: Float -> Int -> Float -- exponentiation
truncate :: Float -> Int
sin, cos, tan, log,
exp, sqrt, log, log10 :: Float -> Float
pi :: Float -- pi = 3.1415926535

others ==, /=, <, <=, >, >= :: a -> a -> Bool

Figure 1: Basic Functions

3.3 Constructing Types

Haskell provides three mechanisms for combining previously defined types. In this section we will discuss
two of these mechanisms: lists and tuples. In class we will discuss these types in a more mathematical
way, but for now we just want to be able to use them and build some intuition as to when to use them.

1The type of fromIntegral is actually (Integral a, Num b) => a -> b. This notation will be explained later, but for
now the simple type given in Figure 1 will suffice.
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3.3.1 Tuples

Tuples in Haskell most closely correspond to structs in C/C++ or classes without methods in Java/Python.
They are representations of the Cartesian products of two or more types–this is a term which you should be
familiar from a discrete mathematics course. Recall that a record is defined by specifying a fixed number
of named components, where each component has a (possibly different) type. Tuples have these same
characteristics, except that the components are not identified by names, but by their position in the tuple.
A tuple type combining a character value, an integer value, and a real value could be defined in Haskell as

(Char, Int, Float)

One convenient use of tuples is for returning more than one value from a function.

Example 1 – fancyDiv

The following Haskell function takes two integer parameters and returns the quotient and
remainder when you divide the first by the second parameter.

fancyDiv :: Int -> Int -> (Int, Int)

fancyDiv n m = (n ‘quot‘ m, n ‘rem‘ m)

Add this function to your test file, load it into GHC, and try it out on a few values.

Important: Remember that in Haskell, as in most modern functional programming languages, function
application is handled a bit differently from more familiar languages. In Python or Java we could expect
to call the function by

fancyDiv (12, 5)

since it takes two parameters. In Haskell, however, this call would indicate that fancyDiv takes one
parameter, and that one parameter is a tuple. In Haskell, of course,

fancyDiv 12 5

is the correct syntax.

Example 2 – fancyDiv (I)

We can investigate two more aspects of Haskell by extending the fancyDiv example a bit. If
you evaluate the expression

fancyDiv 12 0

you will get a program error. It would be nice to have a way to handle such errors with a bit
more grace — for example, if we could put in our own error message. This can be done by
utilizing a special function called ‘error’:
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fancyDiv :: Int -> Int -> (Int, Int)

fancyDiv n m = if (m==0)
then error "Tried to divide by zero"
else (n ‘quot‘ m, n ‘rem‘ m)

Give it a try.

Example 3 – fancyDiv (II)

Another modification we can make to the example is a bit contrived. It is often the case, when
doing a computation, that the final result is quite complex, and that breaking it up into parts
is a bit more understandable. In this example we could do the following:

fancyDiv :: Int -> Int -> (Int, Int)

fancyDiv n m = if (m==0)
then error "Tried to divide by zero\n"
else (quotient, remainder)

where
quotient = n ‘quot‘ m
remainder = n ‘rem‘ m

This is an example of creating definitions local to a function definition. There are two points
to make about this example. First, a note on indentation. Local definitions are introduced
by the where keyword. When where appears, the first character of the next definition (in this
case quotient) sets a column. Every other local definition in the where-clause must begin
in this same column. This indentation rule is quite natural and saves having to use lots of
parentheses to mark scope. If you follow the form that I use in examples, you will have no
problems. Second, the identifiers ‘quotient’ and ‘remainder’ are not integer variables. The value
of ‘quotient’ is the actual expression on the right-hand side. The identifiers are used only in
a substitutional way. Thus, the last example is equivalent to the previous. The where-clause
just helps the programmer decompose the complexity of a return expression. This technique
will be used commonly.

Problem 6

1. Try the techniques illustrated with fancyDiv on the following problem. Implement a function roots
which will take three integer parameters, representing the coefficients of a quadratic equation, and
return the two roots of the equation, if there are any. The type of this function will be as follows.

roots :: Int -> Int -> Int -> (Float, Float)

Remember the quadratic equation:

x =
−b±

√
b2 − 4ac

2a

The function should behave as follows.
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Main> roots 1 2 1
(-1.0,-1.0)
Main> roots 2 4 1
(-0.292893,-1.70711)
Main> roots 1 2 4

Program error: No real roots

You might want to do this in stages as we did the ‘fancyDiv’ function. In the end you should make
sure that the function prints an error message if there are no real roots. Also, if there is just one root,
return an ordered pair with the same value in each position. To determine the number of roots you
must compute the value of the discriminant (the part under the square root!). Use a ‘where’ clause
to get Float versions of each parameter, and then to compute the discriminant and the roots. Using
the where clause in this way keeps the form of your return value simpler and easier to understand.

Be sure to add the function definition to your test file.

2. When there are no real roots for a quadratic equation, there are always two imaginary roots from the
set of complex numbers (using i =

√
−1). Modify the definition of ‘roots’ to make a new function

‘allRoots’ which has the same parameters but returns two roots, where each root has an imaginary
and real part.

There are two important ideas to consider here. First, you should represent a complex number as a
pair of Floats; this means that the function should return a pair of pairs – i.e., it should have type
as follows.

allRoots :: Int -> Int -> Int -> ((Float,Float),(Float,Float))

Here’s a sample execution of allRoots.

Main> allRoots 1 2 3
((-1.0,1.41421),(-1.0,-1.41421))

Main> allRoots 1 2 1
((-1.0,0.0),(-1.0,-0.0))

[The result for the first example above would be more traditionally written as -1.0 + 2.41421i and
-1.0 - 2.41421i.]

Second, look at the different possibilities for the answers and then use the where clause to compute
partial results which are then used in combination to determine the values returned – for example,
compute the real part of a result and the imaginary part separately.

There are a couple of important functions associated with 2-tuples (pairs). The functions fst and snd are
predefined in GHC as follows:

fst :: (a, b) -> a
fst (x,y) = x

snd :: (a, b) -> b
snd (x,y) = y
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You can define similar functions for 3-tuples (triples)2:

fst3 :: (a, b, c) -> a
fst3 (x,y,z) = x

snd3 :: (a, b, c) -> b
snd3 (x,y,z) = y

thd3 :: (a, b, c) -> c
thd3 (x,y,z) = z

These functions give us a way to pick apart a pair or triple to get at the components. Note that in
the function type specification above we have used identifiers a, b, and c in place of known types. In this
situation a, b, and c are known as type variables, and they indicate that any types could be substituted. The
function definitions are independent of the component types involved. These are examples of polymorphic
function definitions.

3.3.2 Lists

We are gradually building up more machinery for solving problems. But so far we have only worked with
numbers (except when using the error function). The real key to the power of a functional language is
the list type constructor. Lists have two characteristics which differentiate them from tuples. First, unlike
a tuple, every element of a list must have the same type; this is more restrictive. Second, the length of a
list is variable, where a tuple has a fixed number of components. In fact in GHC, a list can be (potentially)
infinite in length.

The type of a list is designated by using square brackets. The function sum, which is defined in the standard
prelude, takes a list of numbers as its parameter and returns a result which is the sum of the values in the
list. The type of sum is written as:

sum :: Num a => [a] -> a

Examples of concrete list types include: [Int] for lists of integers, [Char] for lists of characters (more
on this type in a minute), and [Float] for lists of real numbers. Notice that in the sum function type,
there is a polymorphic list type [a] which matches a list of any element type. But we can also have lists
of constructed types; so that [(Int, Char)] specifies the type of lists, where each element on the list is a
pair consisting of an integer and a character. Combinations of these type constructors can clearly get out
of hand, but problems usually give a pretty clear indication of the appropriate combinations.

Actual lists can be specified in a several ways. One, called list comprehension, will be saved for Section 5.4.
Specific lists of values are specified by enclosing a (comma-separated) sequence of values within closed
brackets: [4, 3, -1, 5] is a list of integers, with 4 being at the head of the list and 5 at the end. The
empty list is indicated by [].

Lists of characters are a special case. The character list

[’l’, ’i’, ’s’, ’t’]

2The triple functions are not predefined in GHC.
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can also be (and usually is) written "list". Notice that this is just a String value! That’s because String
and [Char] are aliases for the same type. It is important to realize that the type of ’L’ is Char, while the
type of "L" is [Char] (list of Char).

In order to specify sequences of values, two other methods are used. The notation [5..22] specifies the
list of numbers from 5 to 22 inclusive. An arithmetic sequences of numbers is specified in a similar manner;
[3,7..24] specifies the list containing 3, 7, 11, 15, 19, 23. In a similar manner [’c’..’t’] is the list of
letters from ’c’ to ’t’, while [’c’,’f’..’t’] is the list starting with ’c’ and including every third letter
following – i.e., the list "cfilor". Try out a few of these list expressions. This technique can be useful for
finding where characters sit in the ASCII sequence. [Try [’Z’..’a’], for example.]

An interesting characteristic of Haskell is that it is possible to specify infinite lists. The two methods for
specifying sequences of numbers can be slightly modified to specify infinite sequences and infinite arithmetic
sequences. [5..] is the (unbounded) sequence of numbers starting with 5 and [3,7..] is the (unbounded)
arithmetic sequence starting with 3 and then every fourth number following. Try entering some infinite list
descriptions at the GHC prompt and see what happens – be ready to press ctrl-c! What do you expect
will happen if you try the same technique with characters? Test out your answer.

3.4 List representation

Lists in Haskell are stored internally just like linked lists in Java or Python, but the programming envi-
ronment and language hide the linked-list behind the function cons, denoted ‘:’. So lists are seen as built
from the empty list by successively adding elements using the cons function. The expression

[1, 2, 3, 4]

is an abbreviation for the expression

1 : (2 : (3 : (4 : [])))

It is important to understand this structure. Try some of the following expressions at the GHC prompt.

1 : []
1 : (2 : 3) -- why does this one give an error?
1 : 2 -- same thing?
1 : [2..5]
[2..5] : 1 -- why doesn’t this work?

So every non-empty list has two parts: the element at the head of the list (called the head) and the rest of
the list, referred to as the tail. GHC supplies two functions, not surprisingly called head and tail, which
take a list as the only argument and return either the first element of the list (head) or the list without
the head element (tail). It is important to note that these two functions are defined only if the list is
non-empty! Try applying head and tail to a few lists (including the empty and 1-element lists) to see
how they work. In fact try some of these expressions in the GHC system.

head [3,4,8,6]
head [3,8..100]
head (tail [5,2..(-10)]) -- why are the parentheses needed for -10?
head []
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tail []
head [5]
tail [5]
tail (head [1..100]) -- what do you think this will do? Answer first!

Example 4 – head reversal

The following function takes a list and reverses the first two elements. It illustrates how messy
functional programming can be. Add this to your file, load it into the system and try it out.
What happens if it is applied to a list with one element?

revHead ls = (head (tail ls)) : ((head ls) : (tail (tail ls)))

It is not necessary that the definition of revHead be so difficult to understand. The following
definition takes advantage of the where clause, which we have seen earlier. Remember, the
where-clause gives the programmer the ability to define new constants or functions which are
useful in the definition of a function.

revHead1 l = e2 : (e1 : t2)
where

e1 = head l
t1 = tail l
e2 = head t1
t2 = tail t1

Again, enter this definition and try it out. There are a couple of things to notice in this
example. First, if the length of the list is zero or one, then there is no need to go through all
this concatenation – the answer is just l! But the problem is not just one of efficiency. The
solution above will, in fact, give an error if the length of the list is less than 2 – can you see
why? (Check with your instructor to see if your answer is correct.) We can modify the solution
above to yield a new, more robust solution which will give the correct answer regardless of the
argument.

revHead l = if length l < 2
then l
else e2 : (e1 : t2)

where
e1 = head l
t1 = tail l
e2 = head t1
t2 = tail t1

In this solution, we introduce the function length, another basic list function, which returns
an integer representing the length of the specified list.

Here, it is important to point out that the things that look like assignment statements in
the where clauses above are not assignment statements at all – no values are being stored.
Also, there is no notion of sequence as far as run-time is concerned. All that these lines are
doing is defining substitutions, and the substitutions only occur if they are needed in the calling
expression. In fact, you can replace the whole definition for revHead by the where-less definition
which follows.

CSCI-208 19 Haskell Tutorial



revHead l = if length l < 2
then l
else (head (tail l)) : ((head l) : (tail (tail l)))

Certainly, the where-clause makes things much easier to understand!

Problem 7

Here is an interesting problem to observe the lazy evaluation strategy of Haskell. Evaluate
the following expression at the prompt with different values of n: 10, 100, 1000, 1000000,
1000000000:

[1..n]

You should observe that the bigger n is, the longer it takes to compute and print the result.

Now, evaluate the head of the list with the same different values of n.

head [1..n]

What do you observe?

If the computation of the head of a list is so efficient, then it should be similar for the compu-
tation of the tail of the list. Let’s try it, compute the tail of the list with the same different
values of n:

tail [1..n]

What do you observe? To clarify your observation, compute now the head of the tail of the list
with the same different values of n.

head (tail [1..n])

What do you observe? Explain using the lazy evaluation feature of Haskell.

3.5 Basic List Functions

In the previous section, we used three list functions – ‘:’, ‘head’, ‘tail’. However, there are many other
important basic functions provided by GHC for manipulating lists. The most familiar of these is probably
the concatenate function, denoted ‘++’. This function has the following type

(++) :: [a] -> [a] -> [a]

Notice that both argument lists must have the same element type. This is because when we combine the
lists the resulting list must have elements all of the same type. Figure 2 contains a summary of basic list
functions. Try each of them out to see what they do.

Problem 8
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1. Write a function that takes a list as a parameter and returns its argument minus its first and last
elements. The function should display an error message if the list is empty, but should work otherwise.

Main> firstLast [1..10]
[2,3,4,5,6,7,8,9]

Main> firstLast [2..3]
[]

2. In a similar vein, write a function ‘strip n l’ that returns the argument list with its first ‘n’ and last
‘n’ elements removed. For example,

strip 3 [1..10]

will yield the result

[4,5,6,7]

Hint: use drop and take, after doing some arithmetic with the length of the list (remember the
function length).

3. [A bit harder!] Write a function that takes two integer lists, which are in ascending order and returns
a single sorted list. This is just an implementation of the merge sort algorithm. Call the function
‘mrg’. DO NOT use the sort functions supplied with GHC.

When you define ‘mrg’ remember that there are three cases: one of the parameters can be the empty
list (that’s two cases) or both can be non-empty. If one of the lists is empty then the other is returned
as the value. If neither is empty, then use the minimum of the two heads of the lists as the headof a
list of the result of merging the remaining elements of the two lists (not just the tails, mind you).

(:) :: a -> [a] -> [a] adds an element to the head of a list
(++) :: [a] -> [a] -> [a] concatenate two lists
head :: [a] -> a returns the head of the list
tail :: [a] -> [a] returns the list without the head element
last :: [a] -> a returns the last element in the list
init :: [a] -> [a] returns the list without the last element
take :: Int -> [a] -> [a] returns the list of the first n elements of the list
drop :: Int -> [a] -> [a] returns the list without the first n elements
reverse :: [a] -> [a] returns the list in reverse order
elem :: a -> [a] -> Bool tests an element for membership in the list
notElem :: a -> [a] -> Bool tests for non-membership in the list
(!!) :: [a] -> Int -> a (alist !! n) returns the nth element of the list alist

where n < (length alist)

Figure 2: List Functions
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3.6 Polymorphism

We have all had the experience in programming of having to write two routines which are almost identical
except for the types of the parameters. For example, suppose you are writing a program in which there
are two different lists, one holding integers and another holding characters. You need to be able to attach
new values to the head of each list. In Java , you would use generics to provide this functionality. For
example:

<T> void AddInt(List<T> l, T elem) {
l.add(elem);

}

This works because the author is explicitly saying that the function is generic on the type of the element
to store in the list.

The property of a function definition working for a range of parameter types is referred to as polymorphism
and it is one of the principle features of modern functional programming languages including Haskell. In
fact you have already seen Haskell’s polymorphism at work. In the table in Figure 2 each function’s type
is given using type variables rather than explicit type names. For example we have

head :: [a] -> a

The ‘a’ is a type variable (they must begin with lower case letters) and indicates that the function head is
defined no matter what type is substituted for ‘a’. The same trick idea for tuples. Watch in future sections
for polymorphic function definitions – they are the rule rather than the exception in Haskell programming.
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4 Basic List Processing

It was pointed out in the last section that lists are the central data type for functional programming. For
this reason a great deal of work has gone into the development of basic list-manipulation functions which
have wide application. In this section we will look at several new list-manipulation functions, a new way
to define functions, and some standard list description and processing techniques.

4.1 Function Definition via Pattern Matching

The most straight forward way to define functions in GHC is to write a single expression in terms of the
formal parameters of the function, as in

fact n = if n == 0 then 1 else n * fact(n-1)

A straight translation to C gives

int fact(int n) {
if (n==0) return 1;
else return n*fact(n-1);

}

There’s nothing surprising here. The basic action of the function is to determine whether the parameter is
zero and return an appropriate value. The only problem is that these definitions do not very well match
the definition we would see in a math text. Mathematically we would write

fact (0) = 1
fact (n) = n*fact(n-1) for n > 0

In this form the functions’s formal parameter is used to help break up the cases. In a sense the definition
says that if the actual parameter turns out to be zero then use the first definition, and if not use the second
definition. This definition by cases is more natural and is easier to understand.

In GHC we can write the definition of fact almost exactly as it appears in the mathematical definition:

fact 0 = 1
fact n = n*fact(n-1)

The GHC definition only differs in not requiring the parentheses around the formal parameter. In evaluating
an application of fact to an actual parameter (e.g., fact 25)GHC always tries to apply the definitions
in order, finding the first definition whose actual parameter matches the pattern specified by the formal
parameter. A similar example is the following GHC definition of the Fibonacci function.

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Again, notice how closely this definition structure matches the mathematical notation usually used for
defining the function.

CSCI-208 23 Haskell Tutorial



The idea illustrated here is called pattern matching and is a way of defining functions by cases, depending
on the structure of the data. Pattern matching is a powerful mechanism for simplifying the definition of
functions. This notion of a pattern extends beyond simple values, as illustrated above. Here is a very
typical example.

Example 5 – head revisited

Let’s consider the definition of the list function ‘head’. This function, as we have seen, takes a
list as its only parameter. An actual parameter can either be the empty list or a list that has a
head element attached to the rest of the list, via the : operator. In other words, there are two
cases in the definition. We use this structure to write the following definition for the function
head.

head :: [a] -> a

head [] = error "Can’t take head of an empty list\n"
head (h:rest) = h

Notice how the two parts of the definition reflect the cases we identified and how the formal
parameter in each line reflects the possible structure of the anticipated actual parameter.

Now consider evaluating the expression head [1,2,3]. The first thing we must remember is
that the expression [1,2,3] is a GHC abbreviation; the list actually has the form

1:(2:(3:[]))

– remember this from our earlier discussion. Now, in evaluating head [1,2,3] GHC will first
try the pattern of the first definition line – and clearly the parameter we have is not the empty
list. Second, GHC will try to match the parameter to the formal parameter h:rest. When we
look at the real form of our actual parameter we can see that the 1 matches the h, the colon
operators match up and (2:(3:[])) matches rest.

The matches we have identified become the bindings which are used in the computation of the
function value and so head [1,2,3] evaluates to 1.

Write the corresponding definition for tail using the pattern matching technique.

As another example of this pattern matching technique, recall the definition of the function fst for 2-tuples

fst :: (a, b) -> a
fst (x,y) = x

According to this definition fst has just one parameter and that parameter is a pair. In defining the action
of fst we have used the structure of the data (its a pair) in the formal parameter. In this definition, while
there is just one formal parameter, it is as though there are actually two formal paramters, x and y. When
fst is called the binding between these new formal parameters and the actual parameter is what you would
expect – x gets bound to the first component of the pair and y gets bound to the second component. Thus,
the binding of actual to formal parameters is based on the structure we know the actual parameters must
have.

Problem 9
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For each argument/pattern pair indicate the result of the attempted pattern match: specify
the bindings which will result if the match succeeds.

Pattern Argument Succeeds? Bindings

1 1
2 1
x 1
x:y [1,2] yes x = 1, y = [2]
x:y [[1,2]]
x:y "Bucknell"
x:y ["Bucknell"]
x:y:z [1,2,3,4,5]
x []

[1,x] [2,2]
[] [2,2]

(x,y) [1,2,3,4]
((x:y),(z:w)) ([1],"Bucknell")

Example 6 – revHead revisited

We can use the pattern matching technique to write a clearer definition for the revHead function
defined earlier.

revHead :: [a] -> [a]

revHead [] = []
revHead [x] = [x]
revHead (x:y:rest) = y:x:rest

According to this definition an actual parameter will match the first, second, or third pattern
only if the actual is the empty list, a singleton list, or a list with at least two elements, respec-
tively. Notice that no actual parameter can match more than one pattern. This need not be
the case; when there is an overlap, the first pattern matched is the definition which is used.

Example 7 – Inserting in a List

Most interesting functions written in Haskell make use of pattern matching somehow. Another
good example is the function which inserts a value in a sorted list. The type definition of the
function can be written as follows.

insert’ :: Int -> [Int] -> [Int]

In thinking about how to write this function remember that it is critical to think recursively.
This means we need a base case and then a general (recursive) case. The simplest case is where
we insert a value into an empty list. The empty list is certainly sorted and putting a new value
in the list will maintain the order.
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insert’ n [] = [n]

Notice how we use pattern matching in the second argument to separate out the empty-list
case.

Now for the more difficult general case. First, it is usual to begin a recursive case definition
with the following left-hand side.

insert’ n (x:rest) = ?????

(x:rest) just means that the actual argument will be broken down into its head value x and
the rest of the list called rest. What do we do with n? If it is less than or equal to x we can
just put n at the beginning of the list, but otherwise we must insert it further down the list –
i.e., into rest. That’s where the recursion comes in. The definition just described is written as
follows.

insert’ n (x:rest) =
if (n < x) then n:x:rest

else x:(insert’ n rest)

If the value ultimately belongs at the end of the list then the second case will continue to be
used until rest is empty – then the first case kicks in again.

You might be wondering about the legality of the name insert’. Well, the name insert’
is legal – GHC allows the apostrophe to be used in identifiers. This makes it easier to use
alternate forms of familiar names. In this case there is already a function insert included in
the standard GHC prelude module.

4.2 Order Matters

There is one final important point to make aobout using pattern matching in function definitions. When
GHC sees a function application, for example:

insert’ 23 ls

It looks at the definition of insert’ beginning with the first pattern case and continuing in order through
all the cases until a match is found. If no match is found an error is given. But imagine we have the
following definition for insert’.

insert’ n [] = [n]
insert’ n list = if (n < (head list))

then n:list
else (head list):(insert’ n (tail list))

This definition works perfectly well, but if we reverse the order of the definition, giving the base case second,
then the definition own’t work. why? Since the two parameters are given by simple variable names, they
will match any argument (remember the rule for pattern matching), so even in the case when the list is
empty, the first definition case will be applied. This will fail, of course, because head applied to an empty
list produces an error.
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Try this definition in both orientations to see that the order above works, but the reverse order does not.

Problem 10

1. Assume that we use a pair to represent a rational number, i.e., (1,4) represents 1/4. Write a function
addRat for adding rational numbers, where the type is

addRat :: (Int, Int) -> (Int, Int) -> (Int, Int)

Use pattern matching to get the components of each argument. Be sure to check for zero divisors.
This can be done in the pattern matching style as well.

A bit of a hint – use the following code to detect one of the divide-by-zero error cases.

addRat (a, 0) (x, y) = error "Can’t divide by zero!"

Actually, there is an even better alternative. When using pattern matching it is sometimes the
case that you want a pattern matched, but don’t care about the bindings which would result. The
following definition illustrates the use of the underscore as a wildcard to indicate “match but don’t
bind”.

addRat (_, 0) (_, _) = error "Can’t divide by zero!"

In this case, the 0 must be present in the first actual parameter but otherwise we don’t care about
the values.

Don’t forget to reduce your rational number to its canonical form after adding (you might want a
separate function for that)!

2. Go back and look at the function you defined to merge two sorted lists (Problem 3.5.3. This can also
be conveniently rewritten using pattern matching – do it.

4.3 Functional Loops

Recursive function definition is the basic mechanism for repetition in GHC. You have experienced recur-
sion in previous courses and in the previous problem set. Remember that recursion works based on two
fundamental notions: a base case and a recursive pattern, where the next value is determined based on
previously calculated values. GHC’s pattern matching mechanism plays right into the recursive definition
style.

One of the interesting things about functional programming languages is that, since there are no statements
as such, the usual while or for loops don’t exist. Instead, recursion is used whenever repetition is called
for.

Example 8 – finding the maximum

Suppose we want to find the largest value in a list of integers.

myMax :: [Int] -> Int
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We can scan through the list keeping track of the largest value we have found so far. At the
end of the list we should have the maximum value. This algorithm is great if we are working
in Java, but it is not so straight forward to translate it into a GHC function. We need to think
recursively, not sequentially.

If we want a recursive solution we have to ask two questions: what is the base case and what
is the recursive case (i.e., at some point in the middle of the process)?

Base:
For a singleton list [x], x is the maximum.

Recursion
For a longer list, if the head is greater than the maximum of the rest of the list
(i.e, the tail) then the head is the maximum; otherwise the maximum of the tail
is the maximum of the whole list.

Making use of pattern matching we can write the definition of this function as follows.

myMax :: [Int] -> Int

myMax [] = error "The empty list has no maximum!\n"
myMax [a] = a
myMax (a : ls) = if (a > (myMax ls)) then a else (myMax ls)

This is a natural definition. But we can simplify things a bit by making use of a where clause.

myMax :: [Int] -> Int

myMax [] = error "The empty list has no maximum!\n"
myMax [a] = a
myMax (a : ls) = if (a > m) then a else m

where
m = myMax ls

[A reminder. This last implementation makes use of a where clause. The definition within the
where clause is for substitution purposes – it is not meant as an assignment statement.]

In this example you might notice one important thing. In working sequentially we take each element as
it comes and then do something with the next. Notice that we are repeating the same activity on each
repetition. With recursion what we have to do is call the same function on each repetition. Let’s look
in detail at how myMax would be applied to a small list – in particular we will unpeal the recursive calls
according to the pattern matching.

myMax [5, 3, 9, 1] -->
myMax (5 : [3, 9, 1]) :: need myMax [3, 9, 1] first

myMax [3, 9, 1] -->
myMax (3 : [9, 1]) :: need myMax [9, 1] first

myMax [9, 1] -->
myMax (9 : [1]) :: need myMax [1] first

myMax [1] = 1
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myMax (9 : [1]) = if (9 > 1) then 9 else 1 --> 9
myMax (3 : [9, 1]) = if (3 > 9) then 3 else 9 --> 9
myMax (5 : [3, 9, 1]) = if (5 > 9) then 5 else 9 --> 9

myMax [5, 3, 9, 1] = 9

What really happened here was we worked our way to the end of the list, applied to base case to stop, and
then worked our way out of the recursion. This is standard. If you had any trouble with the problems in
the last section you might return them now and see this discussion has helped.

Problem 11

Try this technique on the following two functions. For each function, write out the answers to
the recursion questions: “what is the base case?”, “ what is the recursive case?” as illustrated
in Example 4.3. Work out a small example first (as above) to set your recursive intuition
[recursion intuition!] – but you don’t have to hand in the example.

1. Write a function sorted, which takes a list of integers as parameter and returns a Boolean
value which indicates whether the list is in ascending order.

2. Write a function mySum, which takes a list of integers and returns the sum of the values in
the list. Assume that the sum of an empty list is zero.
[You may not use the library function called sum in your solution.]

4.4 List Mapping

The functions developed in the previous section are characteristic of many list-processing functions, where
the partial result is folded into the next partial result. In the next section we will look at special functions
in the standard prelude which facilitate this type of list processing. In this section we are interested in
a simpler type of processing – in which each value in a list is treated in the same way. This process of
modifying each value in a list in the same way is called mapping.

Example 9 – convert to upper case

As our first example of mapping, suppose that we must insure that all characters in a string
are upper case. We could write a recursive function (in the style of the last section) which does
the conversion as follows.

cap :: [Char] -> [Char]

cap [] = []
cap (a : ls) = (toUpper a) : (cap ls)

Prelude> cap "abcdEF"
ABCDEF

[The toUpper function is defined in the Data.Char module. You will need to import this module
to call the function typing import Data.Char at the prompt or at the beginning of your file.]
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This is fine and, in fact, easy to handle. But suppose that you also need another function which
converts to lower case. It would certainly be nice to take advantage of the similarities of the
two functions.

In the GHC standard prelude is a function map which makes this mapping easier. What map
does is take a list as one parameter, a function as the other parameter and then applies the
function to each element of the list. We would apply map (rather than cap) to the problem
above as follows

Prelude> map toUpper "abcdEF"
ABCDEF

This function map is not like functions we have seen before. It takes another function as an argument.
What is its type?

map :: (a -> b) -> [a] -> [b]

While this looks a bit messy, if we read from left to right we can clearly see what is happening – especially
since we know how parentheses are usually used. According to this definition (which is polymorphic,
notice) there are two parameters. The second parameter is a list of elements of type ‘a’, the function’s
result is a list of elements of type ‘b’, and the first parameter is a function from type ‘a’ to type ‘b’.

See if you can come up with the appropriate application of map to solve the following problems. You do
not need to define functions for these problems, just demonstrate how to use map to get the necessary
behavior.

Problem 12

1. Convert a list of integers into a list of absolute values of the original list.

2. Convert a list of Strings into a list of integers where each integer in the result is the length of the
corresponding string in the argument.

One final point in this section is to look at the definition of our new function. It seems that a function with
such flexibility might be a bit complicated. But it actually looks very much like the cap function above.

map :: (a -> b) -> [a] -> [b]

map f [] = []
map f (a : ls) = (f a) : (map f ls)

A couple of hopefully obvious points. First, the parameter ‘f’ is of type ‘a -> b’, i.e., it is a function
which takes one parameter of type ‘a’ and returns a value of type ‘b’. The second point follows from the
first — that is that ‘(f a)’, then, must be of type ‘b’. So ‘(f a)’ is an element of type ‘b’ which is
being attached to a new list ‘(map f ls)’ of elements of type ‘b’.
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4.5 List Folding

In this section we will investigate more closely those list-processing functions, where the partial result
from part of the list is folded into the next partial result. Good illustrations of this can be seen in the
functions sum and prod, which add or multiply together all the integer values in a list. Again, this is a
situation where the processing is the same in each case; the only difference is the function (multiplication
or addition) used to do the processing.

If we look at the way we sum a list of integers we will get a better idea about this folding operation. If we
want to sum the values in the list [1,2,3,4] we would get the following:

4 + (3 + (2 + (1 + 0)))

The 0 is there to get things started (its the additive identity). This may look backwards, but since we
begin inside the innermost parentheses, it is really correct. What’s really happening here. We add 1 to
0 and save the result for the next step. We take the result of the previous step (1) and add that to the
second value in the list. We take the result of this step (3) and add that to the next value (getting 6)
and add that result to the final value in the list getting 10. Each subsequent result is folded back in as an
argument to our basic function, in this case addition.

Let’s say we want to define a function which will carry out this operation if we pass it the addition function
as a parameter — we’ll call this function fold. We would apply it as follows:

fold f i ls

with ‘f’ being a binary function, ‘i’ the initial value for second parameter to ‘f’, and ‘ls’ the list over
which ‘f’ is to be folded. At this point we won’t be too explicit about the type of fold, but if we assume
we are to do things like add or multiply integer values in a list, then we have the following.

fold :: (Int -> Int -> Int) -> Int -> [Int] -> Int

Wow! Three parameters: a binary function, an initial value, and a list. The function value returned (in
this case) will be an integer.

One qualification we must make before we try this new function. There is no function in the standard
prelude called fold; there are two functions called foldr and foldl, for folding from the right end or the
left end. There are some other differences between these two: foldr can work on infinite lists if the folding
function does not need to look at all elements of the list; foldl will not work on infinite lists, but is tail
recursive, and can be run very quickly. Because multiplication and addition are commutative it doesn’t
matter which we use, but in the following example we will see a situation where it matters.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

Example 10 – sum, product
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Let’s see how we apply what we have seen to determine the sum and product of a list. The
first thing to note, since the fold functions take a binary function as parameter it is important
to distinguish between infix and prefix functions. The fold functions require that the function
arguments be prefix forms. This means that we cannot use ‘+’ and ‘*’, but rather must use
‘(+)’ and ‘(*)’. With that said, we can write expressions for the sum and product of values
in a list.

Prelude> foldr (+) 0 [1,2,3,4]
10

Prelude> foldr (*) 1 [1,2,3,4]
24

Example 11 – insertion sort

Now to see more of the power and flexibility of folding. Suppose that we consider the insertion
sort algorithm. In this sorting technique we begin with an empty list and then repeatedly take
values from the list to be sorted and insert them in the new (originally empty) list. Each time
we do an insertion the resulting list is used in the next step for another insertion. This is clearly
a folding operation – we just have to determine the various parameters to the fold opertion.

function: The function is clearly the insertion function. It takes two parameters (so
it is binary), a list item and a list and produces a list as result.

insert :: a -> [a] -> [a]

initial value: The initial value with which insert should start (for its second ar-
gument, remember) is the empty list.

list: The final parameter is, of course, the list to be sorted.

The following results.

Main> foldr insert [] [2,4,3,6,1,5]
[1, 2, 3, 4, 5, 6]

Problem 13

• Decimal notation. Suppose we have a character string which we know to consist com-
pletely of digits. You are to define a function which will take this string (a list of characters,
remember), remove leading zeros, and then return the Int value which the string repre-
sents.

convert2Int :: [Char] -> Int

You will probably want to write a couple of functions. First, import the library Data.Char
typing import Data.Char at the beginning of your file. From this module you may want
to use the function digitToInt :: Char -> Int that converts a character in 0..9 into
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an integer (notice for the next question that it also works for characters between A and
F). Second, define a helper function to do the zero stripping. Finally, define the function
conver2Int which does the conversion.
It should be pretty clear that this problem requires the application of a folding function.
But does it matter which way you fold? Does it matter at which end of the list you
start? Of course, the other tricky question is, if you apply a folding function, what binary
operation do you apply through the folding function?

HINT: Consider the function f x y = x * 10 + y. How can you use f repeatively to
convert a sequence of digits d0d1 · · · dn−1dn representing a decimal number into the corre-
sponding integer.

• Hexadecimal notation. In the very same fashion as the previous question, define a
function that converts a string representing a number in hexadecimal notation into its
corresponding integer:

convertHex2Int :: [Char] -> Int

• Test your functions conver2Int and convertHex2Int on several inputs to be sure that
they are working properly.

4.6 Higher-order Functions

This section is just a wrapup for the previous two. In these two sections we have looked at three functions,
map and foldl, foldr which have the interesting property of taking as parameters other functions. Func-
tions which take other functions as parameters are referred to as higher-order functions. We will see as we
go along that looking for already defined or new higher-order functions can make the programming process
much simpler and consequently easier to understand. Watch for more on this topic in future sections.
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5 More List Processing

5.1 A New Kind of Function Definition

It was pointed out early in this tutorial that the syntactic form that function application takes in Haskell is
not what we are used to either from mathematics or other programming environments. The function drop
defined in Figure 2, for example, takes two parameters; the correct syntax for its application is illustrated
in the following expression:

drop 2 [1,2,3,4]

In a more conventional language we would expect to see

drop (2, [1,2,3,4])

Why this form rather than the more usual one? Let’s see if we can get an answer to this question.

Startup the GHC environment and execute the following expression at the prompt.

drop 2 [1,2,3,4]

Not surprisingly the answer [3,4] is returned.

But this new notation does beg the question of what happens if we leave off the last parameter. GHC has a
nice feature which, when given an expression, will report the type of the expression’s result. The command
is the type command and is issued as either

:type, or :t for short.

Let’s try this out on our problem. First let’s see what GHC reports for the type of drop alone.

Prelude> :t drop
drop :: Int -> [a] -> [a]
Prelude>

Fine, that’s what we believe we have, a function which takes two arguments, an integer and a list, and
returns another list (like the original). But now try the following.

Prelude> :t drop 2
drop 2 :: [a] -> [a]
Prelude>

Apparently GHC thinks that ‘drop 2’ is a function itself, taking one list parameter and returning another
list (of the same kind). Let’s try it out on its own. Enter the following command and you should get the
accompanying result.

Prelude> (drop 2) [1,2,3,4]
[3,4]
Prelude>
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Investigate this type command a bit further. Determine the type of each of the following expressions.

drop
length
map

Here’s a simple application of what we have just learned. Suppose we want to write a function which will
take a list of strings and return the same list except with the first two letters dropped from each string –
remember that a string is just the type ‘[Char]’. We can define this function using map and a function
which drops the first two elements from a list – like ‘drop 2’. We define our new function as follows.

listDrop2 :: [[a]] -> [[a]]
listDrop2 ls = map (drop 2) ls

Try it out on a list of string constants and see what happens.

Actually, since the one argument of listDrop2 appears as the final “argument” on the right hand side, we
can leave it off entirely, as follows.

listDrop2’ :: [[a]] -> [[a]]
listDrop2’ = map (drop 2)

Trythis definition in the same way you tested listDrop2. [OK, you don’t have to turn them in, but do it
anyway to reinforce the ideas – it will just take a minute.]

5.2 Currying and Operator Sections

There is a principle here. Let’s consider a more general case: let a function f have the following type
definition:

f :: T1 -> T2 -> T3 -> T4 -> T

Then, if a1, a2, a3, and a4 are expressions of type T1, T2, T3, and T4, respectively, the following
expressions have the following types:

f a1 :: T2 -> T3 -> T4 -> T
f a1 a2 :: T3 -> T4 -> T
f a1 a2 a3 :: T4 -> T
f a1 a2 a3 a4 :: T

This general method of representing function applications is called Currying. [This method is named for
the late Haskell Curry, a long-time member of the Penn State mathematics department. His early work in
the theory of computation provides the mathematical basis for all functional programming languages.]

One snag in this method is providing a convenient syntax for Currying functions which are used as infix
operators, such as * or +. The method used by most functional languages is called an operator section.
The following annotated examples should make the syntax clear. [The parentheses in these examples are
necessary!]
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(* 2) -- "doubling" function
(+ 4) -- "add 4" function
(1 /) -- "reciprocal" function
(/ 4) -- "one fourth" function
(> 5) -- "bigger than 5?" function
(== ’ ’) -- "equals blank" function

Use GHC to determine the type of each of these functions. Try the “reciprocal” function along with map
to determine the inverse of each value in a list of integers (no 0’s please). Don’t forget to include the
parentheses around the section – they are an integral part of the section syntax. These operator sections
will be important in later lessons.

5.2.1 Important Aside

When you check out the types of the operator sections above you will notice a strange bit of syntax...

Prelude> :t (2 *)
(2 *) :: Num a => a -> a
Prelude> :t (> 5)
flip (>) 5 :: (Num a, Ord a) => a -> Bool

Here’s a quick explanation of the notation. Haskell has a class structure which is used to define the various
basic types. In fact, an instance of a Haskell class is a type, not an object as you’d expect in Java or C++.
In the notation above,

‘Num a => a -> a’

is read “assuming ‘a’ (a type variable, remember) is an instance of the Num class, (2 *) has type ‘a ->
a’.” In other words, if you apply (2 *) to an instance of Num (such as an integer) then (2 *) will return
a result of the same type; if you apply it to something which is not a Num then you will get an error.

What is the Num class? The Num class is primarily defined as a set of operations – any instance of Num must
supply implementations for the operations. In particular, all the numeric types are instances of Num. The
class Ord mentioned in the second example, defines ordering and its definition looks like this.

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

Notice that each of these class definitions takes a type variable as an argument. The type variable becomes
the type in the type specifications for the operations. This is a similar mechanism to the the ‘template’ in
C++.

Okay, you got more than just Ord, but to define Ord we also need a definition of the Eq class – the simplest
of all Haskell class definitions. Notice that in each definition, a sequence of functions is defined, with each
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function associated with a type. In the case of Eq, the function ‘==’ is not defined, but ‘/=’ is defined –
in terms of ‘==’. For a type to be an instance of Eq, a definition for ‘==’ will have to be supplied.

Now looking at the second type above (for (> 5)), we see that in this case the type variable ‘a’ is restricted
to being an instance of both Ord and Num. From this we learn that a type can be an instance of more
than one class – a kind of multiple inheritance.

To apply these ideas: Suppose you want to write a function which checks to see if a list is in order. We
can define the function in a straightforward recursive way.

isSorted :: [a] -> Bool
isSorted [] = True
isSorted [x] = True
isSorted (x:y:ls) = if (x < y)

then isSorted (y:ls)
else False

Now, what happens when we try to enter this into GHC? Put the definition in your file and load the file.
You should see something like this.

Prelude> :l test
No instance for (Ord a)

arising from a use of ‘<’
In the expression: (x < y)

...

We could avoid this problem by making our original definition specify, say, integer lists rather than generic
lists. The tip off to GHC that something is wrong is the use of the operator ‘<’ – this is defined for
instances of Ord! So we can solve our problem by indicating that type restriction. “Assuming ‘a’ is an
instance of Ord, ...”

isSorted :: Ord a => [a] -> Bool
isSorted [] = True
isSorted [x] = True
isSorted (x:y:ls) = if (x < y)

then isSorted (y:ls)
else False

5.3 Simplifying Function Definitions

Currying is an important feature of Haskell and has interesting consequences to function definitions. As a
first example, let’s return to the sorting function defined with foldr at the end of the previous section. In
that example we saw the following expression evaluation:

Prelude> foldr insert [] [2,4,3,6,1,5]
[1, 2, 3, 4, 5, 6]

If we use this expression as a basis to define a sorting function, how should we proceed? First, the type of
a sorting function should clearly be
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mySort :: [a] -> [a]

Let’s apply the Currying principle to the expression above.

foldr insert [] [2,4,3,6,1,5] :: [Int]
foldr insert [] :: [Int] -> [int]

Now this looks promising. It would seem that the second expression can serve as the definition of our
sorting function.

mySort :: [a] -> [a]

mySort = foldr insert []

Notice that we haven’t specified any parameters in this function definition. But that’s OK since the type
of foldr insert [] implies there must be one parameter.

Using this technique (and the operator sections of the previous section) we can define many new functions:

mySort = foldr insert [] -- of type [a] -> [a]
double = (* 2) -- of type Int -> Int
square = (^ 2) -- of type Int -> Int
emptyL = (== []) -- of type [a] -> Bool

Finally, we can apply some of these new functions via the map function as follows:

doubleL = map (* 2) -- of type [Int] -> [Int]
squareL = map (^ 2) -- of type [Int] -> [Int]

Problem 14

Recall the formula for computing the standard deviation of a list of values:

σ =

√√√√ 1
N

N∑
i=1

x2
i −

(∑N
i=1 xi

N

)2

Define a function stdDev with the following type.

stdDev :: [Float] -> Float

You may want to use earlier functions you have written or that are provided by the system –
map and/or foldl or foldr.

YOU MAY NOT USE THE FUNCTION sum!
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5.4 Simple Comprehensions

One of the most fascinating of Haskell features, once again a feature shared with most modern functional
programming languages, is called list comprehension. This technique is a translation of set comprehension
which you are familiar with from many math courses. Set comprehension defines the elements of a set by
giving a list of conditions satisfies by each element of the set. For example {x|x < 5, x >= 0} specifies a
set containing the numbers between 0 and 5, including 0.

A list comprehension, then, is an expression which defines the elements in a list by giving defining expres-
sions which are satisfied by each element of the list. Here is an annotated list of Haskell examples. Notice
the implied syntactic structure.

[ x | x <- [1..10]] -- This is a long-winded description of [1..10].
-- This illustrates the important ‘x <- ls’.
-- notation - it says "x comes from the list ls"
-- Read this expression as "the list of elements
-- x such that x comes from the list [1..10]".

[ (x, x*x)
| x <- [0..] ] -- This defines the set of ordered pairs where

-- the second component is the square of the first.
-- In other words, this is the definition of the
-- square function on the non-negative integers.
-- Notice, this is an infinite set!

[ (x, y)
| x <- [2,3,4],
y <- [5,6] ] -- This is [2,3,4]x[5,6] - i.e., the Cartesian

-- product of [2,3,4] and [5,6]:
-- [(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)]

[ (i,j)
| i <- [1..10],
even i,
j <- [i..10],
odd j ] -- This evaluates to the list

-- [(2,3), (2,5), (2,7), (4,5), (4,7), (6,7),
(6,9), (8,9)]

Example 12 – quicksort

List comprehension gives the programmer a powerful tool for expression computation. See if
you can remember how to implement (say in C) the quicksort algorithm. [Remember that
quicksort is the one where you select a pivot element, and then break the list into two parts:
those values less than the pivot and those values greater or equal to the pivot. And you sort
each of those list (recursively).] I’ll give you 5 minutes to implement and test one.

...Time passes...
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How’d you do? Are you finished yet? Well, if C had list comprehension you might have been
able to do it more quickly. Let’s review the algorithm. We choose a pivot element (let’s use
the head of the list) and then rearrange the list so the values less than the pivot come first, the
values greater than or equal to the pivot come last and the pivot goes in the middle. Then we
sort separately the list of elements less than the pivot (we can describe that with a list) and
the list of elements greater than or equal to the pivot (again we can use list comprehension),
and then we concatenate the two lists. But that’s trivial using list comprehension.

quicksort [] = []
quicksort (y:ls) = (quicksort [ x | x <- ls, x < y]) ++

[y] ++
(quicksort [ x | x <- ls, x >= y])

Wow! Four lines is all it takes (without the type definition). But more important than the
length is the clarity. This function specification makes quicksort understandable. Notice the
use of simple pattern matching!

Example 13 – concatenate

If you want to concatenate together all the lists in a ‘list of lists’ then the function type can be
described as follows:

concatenate :: [[a]] -> [a]

We could certainly define this function by using pattern matching and recursion, but is there
another more concise way? Well, what we want to do is to take each element from the original
list and then from each of those elements extract the elements. This can be done with the
following definition.

concatenate xss = [ x | xs <- xss, x <- xs]

Again, a very concise and clear definition. If you write down the obvious recursive definition
(referred to initially) you will see that this conciseness is not at the expense of clarity.

Problem 15

1. Assuming that a list is ordered, write a function insert which takes a list and a new element and
returns the list with the element inserted in the correct position in the list. Use list comprehension
for your solution. [Hint: Look at the quicksort function for inspiration.]

2. Remember the function map? You are to pretent that there is no map function provided in Hugs but
that you need one for a series of functions you want to write. Write your own version of map – but
you must implement it using list comprehension – call your function myMap, so it doesn’t class with
the existing function name.

3. Write a function factors which takes an integer parameter and returns the list containing all its
prime divisors. Do this in two steps.
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• Write a list comprehension for the list of prime numbers.
[Hint: You can use the Sieve of Eratosthenese from class if you want!]
• Use the previous result to implement the function factors

.
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6 User Defined Types

One thing you should have learned in your programming courses is that in designing a program it is always
a good idea to start by figuring out what data is to be manipulated. This strategy works whether you are
using a traditional language like C, a so called object-oriented language like Java, or a functional language
like Haskell. Haskell provides three basic mechanisms for defining data types:

• built-in type constructors for tuples and lists, which we have seen in previous lessons,

• type aliases, and

• algebraic types for defining new type structures.

In this section we will focus on type aliases and algebraic types.

6.1 Type Aliases

A type alias is a name which can be used in place of a specified type expression. Here is an example. Earlier
we discussed an example in which pairs of integers were to represent rational numbers. In Haskell we can
define a type alias Rat and utilize it in the following way.

type Rat = (Int, Int)

addRat :: Rat -> Rat -> Rat

addRat (n1,d1) (n2,d2) = ...

In this case ‘(Int, Int)’ is a type expression for which we are defining the alias Rat. Notice the use of
the keyword type, which must appear as the initial token in an alias definition. The one restriction which
is placed on type aliases is that the name must begin with an upper case letter. One type alias which is
part of the standard prelude, which is always loaded when GHC runs, is the string type:

type String = [Char]

While this aliasing mechanism is very useful for improving program clarity, it doesn’t allow us to expand
our collection of types beyond what is possible with the built-in constructors.

6.2 Algebraic Type

A type alias is a name for a combination of known types with known type constructors – a type constructor
being the notation used to specify an ordered pair or triple:

type Something = (Int, Char, Float)

A type alias does not introduce any new data values.

An algebraic type, on the other hand, is one in which the basic values of a new type are defined by the
user. Notice that for the Rat and String types we just used types which are already defined in GHC. The
simplest and probably most familiar of this category of types is the enumerated type, in which the specific
values of the type are specified. The type Bool is an enumerated type defined defined in GHC as
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data Bool = True | False

Easy enough. Notice that the type name and the constituent values all start with an upper case letter and
are separated by the ‘|’ symbol which can be read or. Thus, a value of type Bool can have the value
True or the value False. Also notice that in defining a new type, rather than a type alias, you must use
the key word data. Here’s another example with colors.

data Color = Red
| Orange
| Yellow
| Green
| Blue
| Indigo
| Violet

This is common layout for such definitions. One more point of notation: the new identifiers defined as
values of the algebraic type are called type constructors.

But the algebraic type facility can do considerably more than just define enumerated types. Using algebraic
types we can define, for example, an alternative to the Rat type defined above. Here it is.

data Rat = Quot Int Int

addRat :: Rat -> Rat -> Rat

addRat (Quot n1 d1) (Quot n2 d2) = Quot n d
where

n = n1*d2 + n2*d1
d = d1*d2

The new constructor Quot takes two integer arguments and binds them together into a new kind of data
value. As the example shows we can use the form of the data value for pattern matching purposes. Now
in fact, this new type, Rat, is really just a syntactic reshuffling of the ordered pair – i.e.,

Quot x y ≡ (x, y)

The advantage of the new form is that when doing pattern matching, for example, the nature of the data
is explicitly represented by the name of the constructor. If we simply use an ordered pair, the connection
between the data representation and its use is lost.

Another example. Suppose that we are to implement a program which will manipulate coordinate data
for 1-, 2-, and 3-dimensional systems. We can use algebraic types to define a type Coord as follows.

data Coord = Point1D Float
| Point2D Float Float
| Point3D Float Float Float

In this definition we are saying that there are three possible data-value forms – each one is defined with its
own type constructor. Using this type definition we can write a general function for finding the distance
between two points. Notice how pattern matching makes the function definition easy.
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distance :: Coord -> Coord -> Float

distance (Point1D x1) (Point1D x2)
= abs (x1 - x2)

distance (Point2D x1 y1) (Point2D x2 y2)
= sqrt ( (x1 - x2)^2 + (y1 - y2)^2 )

distance (Point3D x1 y1 z1) (Point3D x2 y2 z2)
= sqrt ( (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 )

distance p1 p2
= error "The two points have incompatible dimensions."

The examples we have seen of algebraic types are just more readable versions of tuples. In this last example
of coordinates for three different dimensions we stepped a bit beyond tuples by using the algebraic type
facility for making a union of types. But the most important application of algebraic types is for recursive
types. We will see these in a later lesson when we investigate implementations for lists and trees.

6.3 Type Properties

When we define an algebraic type remember that we are defining values for a new type. The new values
are embodied in the constructors of the new type. There are two questions that arise because of these
constructors.

6.3.1 Making a new type an instance of a class

First, can we use new types in ways we are used to using already existing types. For example, can we
compare values of these new types? In other words, is it possible for an algebraic type to be an instance
of an existing class – e.g. Eq or Ord? The answer is yes and the instance can be established in two ways.

Consider the type Rat defined above. We would like to be able to determine whether two values are equal
(the Eq class) or to compare the order of two values (the Ord class). Since the Ord class is defined using
the Eq class, we need to make Rat an instance of each of them. We do so by giving function definitions for
the operations of the class for the new type values – we are really defining overloaded operations.

data Rat = Quot Int Int

instance Eq Rat where
(Quot a b) == (Quot r s) = (a*s == b*r)

instance Ord Rat where
(Quot a b) > (Quot r s) = (a*s > b*r)
(Quot a b) < (Quot r s) = (a*s < b*r)
a >= b = (a > b || a == b)
a <= b = (a < b || a == b)

With these definitions you can compare values of type Rat. This general strategy works for any user defined
type.

Enter these definitions into a test Haskell file and try out the following expressions:
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(Quot 1 3) < (Quot 2 5)
(Quot 3 6) == (Quot 1 2)
(Quot 4 7) <= (Quot 3 5)
Quot 4 7

Now when you try that last one you will get an error – something about ”Cannot fine ”show” function...”
This error occurs because the GHC system doesn’t know how to display these new values for Rat.

6.3.2 Displaying values of a new type

When you define a new data type it is very likely that you will want to display values of the type. How
you do this depends on exactly what you want to appear on the screen. For example, if you define the
following type

data Cplx = Complex Float Float

then when the system displays a value of type Cplx you could expect to see either

Complex 3.0 4.0

or, perhaps even better,

3.0 + 4.0i

which gives a representation closer to what we expect to see in a mathematical setting.

To accomplish the first version is quite easy, and is the strategy which you will often use. The second
requires code similar to that given in the previous section, because it involves defining an instance of a
class known as Show. To define an instance of Show it only requires that you define an overloaded version
of the operation

show :: a -> String

Here is an instance for Rat.

data Rat = Quot Int Int

instance Show Rat where
show (Quot a b) = (show a) ++ "/" ++ (show b)

Enter this last one into your test file and try the expression which caused an error in the last section.

Now there is an alternative which is often satisfactory. The idea is to let Haskell figure out for itself how
to display the values in an orderely way. We tell Haskell to figure out how to display values by appending
a statement to the end of the type definition. Here it is for Cmplx

data Cplx = Complex Float Float
deriving (Show)
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You can get the implication – Haskell will ”derive” an instance of Show for us. In this case GHC will use
the simplest mechanism for displaying values – that is by just displaying them as they appear in definitions.
Try a similar thing for your Rat definition and try it out on the value you just tried above. Be sure to
”comment out” the instantiation of Rat which you just did. You should see something along these lines.

Main> Quot 3 5
Quot 3 5

Problem 16

1. Return to problem 3.3.1 in Section 3. Use the algebraic type for complex (imaginary) numbers
discussed above and redo your solution to part 2 of the problem making use of the new type – call
it Cplx. Just so you get off on the right track, notice that you should define the type of the function
roots as follows.

roots :: Int -> Int -> Int -> (Cplx, Cplx)

Be sure that your definition of Cplx is made an instance of Show by redefining the operation show
as illustrated above. show should display a Cplx value in the form "a + bi", where ”a” and ”b” are
the two Float components.
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7 A Simulator for Assembly Language

In this section we are going to see how functional languages and in particular Haskell is able to rapid
prototype a simulator for a mini assembly language.

The assembly language considered here is a variant of one you might have seem in the past3. One simplifi-
cation is that instead of having a set of instructions working on both registers and memory, the instruction
set only deals with memory. As a first example, consider the assembly program that sums all the integers
from 1 to 13:

loadi M0 13 M[0] := 13
loadi M1 0 M[1] := 0
loadi M2 0 M[2] := 0

Lbl1: beq M0 M2 End If M[0] == M[2] then PC := Instr(End) otherwise PC := PC+1
add M1 M1 M0 M[1] := M[1] + M[0]
subi M0 M0 1 M[0] := M[0] - 1
jump Lbl1 PC := Instr(Lbl1)

End: exit

The semantics of each instruction is indicated next to the instruction. This program is using, load,
branching, addition, subtraction and jump instructions. An instruction whose name ends with a i indicates
that it takes an immediate value as one of its argument.

This assembly language executes on a memory. The memory is an array of integers. It can be accessed or
modified through the index of the memory location.

An instruction in the program may have a label. This label is then used to refer to this instruction in other
Branch/Jump instructions.

7.1 Data types for the assembly language and machine

The memory on which an assembly program is working is simply described as a list of integers:

type Memory = [Int]

A memory location is an integer that refers to the index in the memory. It starts at index 0.

type MLoc = Int

The data type describing any of the instruction of the assembly language can be handled very easily as an
Algebraic datatype can handle very elegantly all the different type of instructions in our assembly language:

data Instruction = Addi MLoc MLoc Int -- Arithmetic operations
| Subi MLoc MLoc Int
| Muli MLoc MLoc Int
| Add MLoc MLoc MLoc
| Sub MLoc MLoc MLoc
| Mul MLoc MLoc MLoc

3Hmmm or MIPS
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| Move MLoc MLoc -- Memory
| Load MLoc MLoc
| Loadi MLoc Int
| Store MLoc MLoc
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| Beq MLoc MLoc String -- Jump/Branch
| Jump String

| Exit -- Exit
deriving (Show)

The instruction set is broken into different families. First, there is a set of basic arithmetic operations.
Second, there is a set of instructions for memory manipulation. Third, there is a set of instructions for
branching and jumping. Finally, there is a set of instructions for sytem call, here it is only instruction for
exiting the program.

The semantics of each instruction is summarized in the following table, where M refers to the memory and
PC to the program counter:

Instruction Semantics
Addi m1 m2 i M [m1] := M [m2] + i
Subi m1 m2 i M [m1] := M [m2]− i
Muli m1 m2 i M [m1] := M [m2]× i
Add m1 m2 m3 M [m1] := M [m2] +M [m3]
Sub m1 m2 m3 M [m1] := M [m2]−M [m3]
Mul m1 m2 m3 M [m1] := M [m2]×M [m3]
Move m1 m2 M [m1] := M [m2]
Loadi m1 i M [m1] := i
Load m1 m2 M [m1] := M [M [m2]]
Store m1 m2 M [M [m2]] := M [m1]
Beq m1 m2 lbl If M [m1] == M [m2] then PC := Instr(lbl)

else PC := PC + 1
Jump lbl PC := Instr(lbl)
Exit Exit the program

A program is a sequence of instructions that can be represented as a list. An instruction may be labelled
with a string. In this case, a branch/jump instruction can refer to the labelled instruction using the label.
Thus, a program is defined as a list of pair whose first component may be a String for the label or nothing,
and the second component is an instruction:

type Program = [ (Maybe String, Instruction) ]

The generic datatype Maybe is predefined in Haskell, so you won’t need to type its definition in your
program. It is defined as

data Maybe a = Nothing | Just a

When an assembly program is running, the address of the instruction being executed is stored in what is
called the Program Counter. The program counter is simply an integer corresponding to the index of the
instruction in the program.

type ProgramCounter = Int
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7.2 Execute one instruction

Most instruction need to access the memory or change it at certain memory locations. The two following
two simple functions perform these two tasks:

getMem :: Memory -> MLoc -> Int
getMem (v:xs) 0 = v
getMem (x:xs) mloc = getMem xs (mloc-1)

setMem :: Memory -> MLoc -> Int -> Memory
setMem (_:xs) 0 v = v : xs
setMem (x:xs) mloc v = x : setMem xs (mloc-1) v

The function call getMem m mloc returns the value in the memory m at the memory location mloc. The
function call setMem m mloc v recursively traverse the memory m until it is positioned at the memory
location mloc and replace the current value by a new one v.

The next two functions are for the accessing instructions in the program. The first function getInstr
returns an instruction given a program and a program counter. The second function getPC returns the
index of the instruction given a program and a label:

getInstr :: Program -> ProgramCounter -> Instruction
getInstr (instr:_) 0 = snd instr
getInstr (_:xs) n = getInstr xs (n-1)

getPC :: Program -> String -> ProgramCounter
getPC ((Just s, instr):xs) label = if s == label then 0 else 1 + getPC xs label
getPC ((Nothing, instr):xs) label = 1 + getPC xs label

Now we can define a function oneInstr executing any instruction of the type Instruction. This function
returns a pair containing the new program counter and the updated memory after the instruction is
executed. For the three instructions Addi, Sub, Loadi and Jump their execution is described as the following:

oneInstr :: Program -> ProgramCounter -> Memory -> (ProgramCounter, Memory)
oneInstr p pc m =
case getInstr p pc of

Addi loc1 loc2 n -> (pc+1, setMem m loc1 ((getMem m loc2) + n))
Sub loc1 loc2 loc3 -> (pc+1, setMem m loc1 ((getMem m loc2) - (getMem m loc3)))
Loadi loc1 n -> (pc+1, setMem m loc1 n)
Jump lbl -> (getPC p lbl, m)
...

For each instruction, except the last one, the program counter is incremented to the next instruction (pc+1).
In the case for the Jump, it returns a new program counter corresponding to the index of the instruction
labelled by lbl. We have only treated a few instructions, you will be asked to complete this function in
the problem.
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7.3 Execute an entire program

The next function executes an entire program, given a program counter, and an initial memory. Eventually
when the execution of the program reaches an Exit instruction then it returns the memory as it is at the
end of the computation. The function execute is recursively defined as the following:

execute :: Program -> ProgramCounter -> Memory -> Memory
execute p pc m =
case getInstr p pc of

Exit -> m
_ -> case oneInstr p pc m of

(pc1,m1) -> execute p pc1 m1

For example, consider the following program:

loadi M0 14
loadi M1 9
addi M0 M0 6
sub M0 M0 M1
jump End
sub M0 M0 M1

End: Exit

Encoded as a Haskell value of type Program it would be

prog1 :: Program
prog1 = [ (Nothing, Loadi 0 14)

, (Nothing, Loadi 1 9)
, (Nothing, Addi 0 0 6)
, (Nothing, Sub 0 0 1)
, (Nothing, Jump "End")
, (Nothing, Sub 0 0 1)
, (Just "End", Exit) ]

This program can be executed in typing the following command in GHC prompt:

Main> execute prog1 0 [0,0,0,0]
[11,9,0,0]

Be sure to understand how the functions defined so far work and why it returns this result.

Problem 17

• Complete the function oneInstr such that it handles every case in the Instruction datatype ac-
cording to the semantics. Make sure to complete the function for the different cases in order in which
they were declared in the definition of the Instruction type.

• Define a value called prog2 of type Program for the assembly program given at the beginning of
the section computing the sum of integers from 1 to 13. Try your simulator typing the following
command at the prompt:
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Main> execute prog2 0 [0,0,0,0]

• Define a program prog3 of type Program, that computes the sum of a list of integers. The list
is assumed to be present in a contiguous region of the memory before the execution starts. By
convention, the list of integers is placed starting at the 6th memory location (5). The first 4 memory
locations are reserved as local registers, the fifth memory location contain the integer for the size of
the list. The result of the sum of the list must be found in the first memory location (0). A list of
[12,17,41,13] would be encoded as the initial memory

[0, 0, 0, 0, 4, 12, 17, 41, 13]

Test your program typing the following at the GHC prompt:

Main> execute prog3 0 [0, 0, 0, 0, 4, 12, 17, 41, 13]
[83, ...]

Your assembly program must work for any list of integers of any size (forget about the overflow
issues).
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8 Recursive Data Structures in GHC

In the previous section we introduced the notion of algebraic types as a substitute for the imperative record
structure. In fact we found that algebraic types combine both enumerated as well as record types. One
of the standard applications of records in imperative programming is to build list, tree, and graph nodes.
These structures are dynamic and inherently recursive. How are they dealt with in GHC? In this section
we will look at two applications: a list type and a tree type.

8.1 A List Type for GHC

You may have the impression that the list type in GHC is built into the structure of the language. In fact,
it is just a polymorphic algebraic type. The following could be substituted for the definition of list.

data MyList a = Empty
| Node a (MyList a)
deriving Show

In this new type ‘a’ is a type variable, of course, and Empty and ‘Node x y’ stand in place of the more
familiar

and ‘x:y’, respectively. Notice the explicit recursion in the definition – this works just like the standard
linked list implementation in Java, except our GHC version is polymorphic.

public class MyList<T>{
T value;
MyList<T> link;

}

In a Java program an empty list will be represented by null. The elements of a longer list are accessed
by following the link references. In GHC the same structure exists, but there are no references, just
constructors.

The values of the type MyList have a very similar structure to those of the standard GHC list, but
constructors are used in place of [ ] and ‘:’. For example, the corresponding value for [1,2] would be

Node 1 (Node 2 Empty)

The type MyList above can also be used in function definitions by pattern matching. For this new list
definition we can write two new functions.

myHead :: MyList a -> a

myHead (Node n rest) = n

myTail :: MyList a -> MyList a

myTail (Node n rest) = rest
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These function definitions derive directly from the structure of the type definition for MyList. Each value
of this type is in one of two forms – either Empty or Node n r, where n is of type Int and rest is of type
MyList. Instead of using pointers we make use of natural recursion.

Problem 18

1. Write the MyList equivalent for the following lists:

(a) [ ]

(b) [5]

(c) [5, 3, 1]

(d) ”Help!”

2. Copy the type definition given above for MyList as well as the functions myHead and myTail into
your lab file. Load this into GHC and try out the functions on a few lists. If you get what seems to
be a funny result, try the same thing with the corresponding function from Prelude.hs – i.e., ‘head
[1,2]’ rather than ‘myHead (Node 1 (Node 2 Empty))’.

3. Implement a function myFilter which takes a Boolean function and a MyList and returns the MyList
which contains those elements of the original list which satisfy the function (parameter).

myFilter :: (a -> Bool) -> (MyList a) -> (MyList a)

4. Add a function with the following type

myDrop :: Int -> (MyList a)-> (MyList a)

which drops the first n elements from the list (be sure to check the number of elements to be dropped
against the length of the list). Notice that drop n l should return l if n is zero, but should return
the list resulting from dropping n-1 elements from the tail of l!

8.2 Trees

The tree structure is commonly used in programming. Having just seen how GHC can be used to define
a list structure, it should come as no surprise that we can use the same mechanism to define a type for
trees. The recursive nature of trees suggests that there are three forms, the null tree, a leaf node, and a
tree branch node, which has a sequence of subtrees (we will stick to binary trees). We can capture this
structure in the following definition:

data Tree a = Null
| Leaf a
| Branch (Tree a) (Tree a)

deriving Show

This type restricts the value nodes to the leaves of the tree. If every node requires a value then the following
could be used.
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data Tree a = Null
| Branch a (Tree a) (Tree a)

deriving Show

If we want to write a function treeInsert for integer trees we could do the following:

treeInsert :: Tree Int -> Int -> Tree Int

treeInsert Null v = Branch v Null Null
treeInsert t@(Branch n ltree rtree) v

| v < n = Branch n (treeInsert ltree v) rtree
| v > n = Branch n ltree (treeInsert rtree v)
| otherwise = t

In this definition the insert function ignores values which already appear in the tree4. To make this
definition more general we must require that the type of the node data be an instance of the Ord class –
so we would rewrite the type definition as follows (the function definition remains unchanged).

treeInsert :: (Ord a) => Tree a -> a -> Tree a

This definition will work, then, for any type of data which is an instance of the Ord class.

Example 14 – [ building a sorted binary tree]

How can we build a sorted binary tree if given a list of values? As expected, we go through the list one
element at a time and call treeInsert for each element, passing also the current value of the tree. There
is a very small problem in how to get started. We want

treeBuild :: (Ord a) => [a] -> Tree a

but know that treeInsert takes a two parameters. We solve the problem by providing an auxiliary
function to do the building and use treeBuild to extract the final value as the return value.

treeBuild’ :: (Ord a) => Tree a -> [a] -> Tree a

treeBuild’ tree [] = tree
treeBuild’ tree (v:vs) = treeBuild’ (treeInsert tree v) vs

treeBuild :: [Int] -> Tree Int

treeBuild = treeBuild’ Null

Here is another trick we can use because of the use of currying. We have defined a function without
specifying a parameter. But a bit of thought indicates the parameter is superfluous. If we look at the right
side of the function definition we see ‘treeBuild’ Null’, which, according to our discussion of currying,
has type ‘[a] -> Tree a’, which is exactly the type we need for treeBuild. We are defining treeBuild

4You might also notice that treeInsert has a new kind of pattern using @. The @ notation allows you to name the object
via an identifier to the left and name the components using pattern matching to the right.
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to behave exactly as ‘treeBuild’ Null’ behaves. Since we have already specified this behavior, we need
define no more.

Problem 19

1. Write a function which takes a tree as a parameter and returns a list of values from the nodes. The
values should appear in ”in-order” order – assume the tree has its values in the nodes.

2. Now write a function which sorts a list by first creating a sorted binary tree and then extracting the
values from the tree. It should be obvious that this calls for the use of the function treeBuild and
the function from the previous problem.

3. Write a function treeMap which behaves like the list version – i.e., it takes a function and applies
the function to each node of the tree, thus producing a new tree.

treeMap :: (a -> b) -> (Tree a) -> (Tree b)
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9 Haskell IO

9.1 File Input

The input we have used so far has all been supplied on the command line in the form of parameters.
Haskell, however, provides a sophisticated mechanism which implements IO, including interactive and file
IO. In a functional language this is not so straightforward, since everything is written in terms of functions
without state. To setup the Haskell approach to IO, we need to think of IO as a function. IO in C++ has
an interesting form–it uses a stream extraction operator (‘>>’) as follows

cin >> value1 >> value2;

when cin names the input stream object and value1 and value2 are variables (possibly integers?). It
appears from this line that >> is an infix operator. But, that makes its use here a bit mysterious. What
does the expression cin >> value1 return such that the next >> operator can return a value for value2?
To make this explicit, let’s fully parenthesize the original statement

(cin >> value1) >> value2;

Now it is obvious that the first expression must return an input stream! In particular, it just returns the
same stream we read the first value from: cin! The difference is that the first value has been removed
from the input stream, so that the next value can be assigned to value2.

Can we make this a bit more functional? Think of the type signature that the >> operator must have:

(>>) :: InputStream -> Address -> InputStream

The crucial aspect of this function is that it returns an input stream–i.e., a special kind of IO object. In
Haskell, IO functions have the same characteristic. They will return a special IO value which represents
the altered state of the IO environment.

9.1.1 The Monad IO

There is a special type constructor named IO in Haskell whose values are IO states. This kind of type
constructor is called a monad. The term comes from a branch of mathematics called category theory, but
in general you can think of using a monad as box that prevents side effects from leaking out.

A few examples will illustrate how the IO monad is used. Use the ‘:t’ command to get GHC to tell you
the type of the function putStrLn. You should get the following response.

Prelude> :t putStrLn
putStrLn :: String -> IO ()

So this function is one of these IO functions and takes a string value as a parameter. It displays the string
on a line followed by a new line character (supplied by the function). Try it out.

Prelude> putStrLn "This is a line"
This is a line

Prelude>

CSCI-208 57 Haskell Tutorial



If we embed a new line character of our own, the resulting string gets displayed as two lines.

Prelude> putStrLn "This is a line\nand so is this"
This is a line
and so is this

Prelude>

Notice the odd looking return type for putStrLn – ‘IO ()’. The empty parens form the notation for the
one element type — rather like the type void. The type constructor IO apparently takes an argument.
Here’s another example which will help clarify this feature.

getALine :: String -> IO ()

getALine str = do putStr str
line <- getLine
putStrLn line

When executed, this function displays the string str as a prompt, inputs the line which is terminated by
a return, and then displays the line. Enter this function into a test file and try it out — here is what you
might see (given the same parameter and input).

Main> getALine "Enter a line >> "
Enter a line >> this one?
this one?

What do we have in this function. First, and most obviously, there is a new “control” structure (operation)
– ‘do’. This construct takes a sequence of function applications and carries them out one at a time, feeding
the return value of one as input to the next. And of course, the return value is always of type IO. Check
out the types of each of the functions involved.

Main> :t putStr
putStr :: String -> IO ()
Main> :t getLine
getLine :: IO String
Main> :t putStrLn
putStrLn :: String -> IO ()

The first and last of these functions aren’t new. Each takes a parameter and displays it (notice what
happens if you put putStrLn in place of putStr!). The second function, getLine, does not have the same
structure — the argument with IO this time is String. In fact, getLine does not have what we think of
as a function type at all! This type helps explain the syntax of the line containing the call to getLine.

line <- getLine

Without dwelling on the details, this line indicates that IO monad can yield a string which will be referred
to via a new binding for the identifier line. The value associate with line as well as the IO return value
are both fed into the next (third) component of do.
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If you still feel a bit confused about what exactly a monad is, that’s okay! The theory behind monads
is quite complicated. It is just important that you recognize that you will need to use the do construct
whenever you want to use functions on monads.

Problem 20

Write an interactive function defined as

iChoose :: IO ()

which interactively enters two integer values (each value comes in as a string), converts the
values to integers, computes choose on the parameters and displays the result.

Hints:

• Use the function you wrote a couple of weeks ago to convert the input string to an integer
value. See problem 4.5.

• Enter the two values separately – i.e., two prompts and two separate inputs.

• Remember that each element of a do operation must return the IO type, so the use of
auxilliary functions should be considered.

• Do the function incrementally – do the inputs and check that they are correct. Then
convert the input strings to Int and pass to show and that whole lot to putStrLn.
Continue incrementally.

9.1.2 File IO

What we are really interested in is the ability to input from a file. This turns out to be realy easy. There
is a function readFile which takes a path name as parameter and returns ‘IO String’ – the String part
is the list of characters in the file! Here is a function to enter into your test file and try out.

getFile :: String -> IO ()

getFile str = do line <- readFile str
putStr line

Notice that our function getFile takes a string parameter and returns the IO type. The action of the
function is to open and read the file with pathname in str and associate the character list from the file
with the identifier line (first line of the do) and then to print this character list to the screen. Give it a
try giving the name of a file in the current directory.

Problem 21

You are to provide a Haskell implementation of the Unix command wc which displays the
number of characters, words, and lines in a (single) Unix text file. Try the following in your
GHC session.

Prelude> :! wc test
93 371 2315 test

CSCI-208 59 Haskell Tutorial



[This illustrates the use of ‘:!’ as a way to ask Unix to execute a command without leaving
GHC.]

Apparently the file ‘test’ has 2315 characters, 371 words, and 93 lines. How can we produce
this same result without using the Unix wc command? The answer, of course, is to make use
of the readFile function. If this function returns a list containing the characters in the file,
then we should be able to use the length function to determine the length of that list. But
this doesn’t provide the formatting the wc command does or the values for number of lines and
words.

You should implement the following function:

wc :: String -> IO ()

wc name = ???

• There is a function words defined in Prelude.hs. Check out its type. The function takes
a character string and converts it to a list of strings where each string contains a single
word (a list of strings).

• There is a function lines – it converts a character string into a list of strings, where each
string is a line of the original string (i.e., terminated with the new line character).

• You have to write an auxiliary function which computes the three values needed and then
puts them into the correct format and returns the resulting string. You might want to
write more than one auxiliary function. These auxiliary functions will not be IO functions!
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10 Processing Character Data - A Tokenizer

One of the important applications of lists in GHC is to sequences of characters from input (for example a
text file). In processing a language, for example, the first step is often to reduce the list of input characters
to a list of tokens, as we have discussed in class. In this example we will see how pattern matching can be
used to write a function which converts the head of a character list to a token.

10.1 Generating Tokens

Let’s consider the functional programming language defined in the class project (click here to see the
grammar). What we want to do at this point is to understand what tokens are inherent in the language
and to write first a data type for the tokens and then write a function which converts an input character
list (string) into a result list of tokens.

As we discussed in class, tokens are of two types: constant tokens (key words and punctuation) and variable
tokens which have an associated value, for example FunctionName above which has a token category and
a value which is the character string representing the actual name. We can use an algebraic type to define
the token classes, using constant values for the key word and punctuation tokens and constructors for
the variable tokens. Try this on your own first before looking at the following answer. First write down
informally what the syntactic elements are and then categorize them. Here’s the GHC type definition for
tokens for this language.

data Token = Id String |
Num Int |
Error String | -- the parameter is the erroneous string
If |
Then |
Else |
EndIF |
Let |
In |
Assign | -- for =
LP | -- for left paren
RP | -- for right paren
SColon | -- semicolon
Period | -- for .
Plus | -- for +
Times | -- for *
Minus | -- for -
Divide | -- for /
Lt | -- for <
Le | -- for <=
Gt | -- for >
Ge | -- for >=
Eq | -- for ==
Ne | -- for /=
EOP -- stands for end of program (this is very handy)
deriving (Eq, Show)
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Notice the last line of the definition. This line indicates that the data type Token will be automatically
made an instance of the classes Eq and Show. This means that values of type Token can be compared
for equality and can be converted to a String value by calling show. This automatic instantiation is a
byproduct of the algebraic type structure.

We ultimately want to define a function

convert2Tokens :: String -> [Token]

but we will start with a more basic function which takes the token substring at the head of the list and
returns the appropriate value of type Token. Part of this function definition is easy since we can use pattern
matching to deal with all the punctuation tokens. The function getToken should have the following type
and (partial) definition.

getToken :: String -> Token

getToken [] = EOP -- when the list is empty we’re at
-- the end of the program

getToken (’=’:rest) = Assign
--
-- you will fill this in
--
getToken input = Error -- if non of the previous cases

-- apply then return the error
-- token regardless of the pattern

At this point anything which is not punctuation will be converted to the error token. This, of course, is
not acceptable in the long run. The following list indicates what problems await.

1. What if one input token is the initial part of another input token? An example would be the two
comparison operators < and <=. Another example could be (in Modula-2) IF and IFELSE (two key
words) or FOR and FORTH (a key word and an identifier).

2. What if there are blanks at the beginning of the input?

3. What about recognizing variable length tokens such as identifiers and numeric constants?

The second two problems will be discussed in the next section. They are problematic because initial
blanks, identifiers, and numeric constants involve an unpredictable number of characters – in this case
pattern matching does not work well. The first problem will be dealt with below. But first, try the
following problems.

Problem 22

1. Enter the type and function definitions just described into a new file called ‘lexical’.

2. Complete the definition of getToken according to the pattern established above. Test it out with
the following type of expression:

getToken "= anything here"
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Now we will address the problem of distinguishing tokens where one is the initial substring of the other.
Suppose that we extend our language so that the usual comparison operators (< <= == /= >= >) are
included. It should be easy to extend the definition of the type Token to include token versions of each of
these operators (LE could be used for <=, for example). But converting to tokens presents a slight problem.
Remember that the way pattern matching works is the first line of the function definition is tried to see
if the corresponding actual parameter matches the pattern. If not, the second pattern is tried and so on
until a matching pattern is encountered (that’s why the last pattern above is just a variable name, since
that will always be matched). This means that the order in which the patterns appear makes a difference.
What would happen if the following lines were inserted into the definition of getToken?

getToken (’<’:rest) = Lt
getToken (’<’:’=’:rest) = Le

The answer is, the second pattern would never be matched, because if the first character of the input is
< then even if the second character is = the first pattern will match. So the various pattern’s to be used
must be carefully ordered.

One final comment on the current example. We want to use the function getToken repeatedly to convert
the input character list to an output token list. But in order to be able to get the second token (and
subsequent tokens) we must know where we left off after the first token. Fortunately this is easy. We just
have getToken return a pair, the token and the rest of the input list.

Problem 23

1. Extend the code in the ‘lexical’ file to include the comparison operators which you are familiar with
from C, i.e., <, <=, ==, /=, >=, >. Chooses appropriate token names as indicated above. Modify
getTokens so that it will recognize these tokens. [Do this in a copy of your ‘lexical’ file since we
won’t be using these operators in future examples.]

2. Change the type definition of getToken so that it returns a pair as indicated (token in the first
component). Then modify the function definition to reflect this.

3. Even though we haven’t finished getToken you should still be able to write the definition of convert2Tokens.
Give it a try. Recursion is the key, of course, but be careful not to generate a list which is backwards.

10.2 String Processing

Remember from an earlier lesson we defined the following input function.

getFile :: String -> IO ()

getFile str = do line <- readFile str
putStr line

When the function getFile is evaluated the content of the file named by str is returned to line as a
String value and then the value of line is displayed. We will want to make use of this function in order
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to print a list of tokens – so that we can test the tokenizer before incorporating it into a larger function –
i.e., a parser. [Don’t worry, that’s not part of the tutorial – but it can be done in GHC in a very eligant
way.]

What we will want to do here is to replace the identifier line in the call to putStr with a function call as
follows.

getFile :: String -> IO ()

getFile str = do line <- readFile str
putStr (f line)

The idea is that the function f will process the characters in the string line and eventually return a
different string value. Suppose, for example we want to print the “words” in a file.

We could use the following function definition for f.

f :: String -> String
f str = unlines (words str)

The function words (from Prelude.hs) takes a string and returns a list of strings, where the strings in the
list are the words from the original string. Here’s an example.

Main> words "this is a .. <>--- test! for ’words’."
["this","is","a","..","<>---","test!","for","’words’."]

Notice that a “word” is apparently any sequence of non-whitespace characters. If we use unlines in
conjunction with words then we get the following.

Main> unlines (words "this is a ..for ’words’.")
"this\nis\na\n..for\n’words’.\n"

What we have here is a string with embedded new line characters. If this value is given to putStr then
the separate words should be displayed on separate lines. Give that a try in your test file. Before testing
it create a small data file containing just a few words on a few lines – give that file name as the parameter
to getFile. If you use a file which looks like this (the first and last lines are not part of the file – just to
mark off the file contents)

=============================
This is a ....
test >==<

of getFile
=============================

then the output from a call to getFile should look like this

Main> getFile "data"
This
is
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a
....
test
>==<
of
getFile

What you will need to do later to test your tokenizer is make a similar modification to getFile so that
when your tokenizer process a file of data, the tokens get written out one per line. The function show will
probably come in handy at that time.

10.3 More String Processing

In Example 10.1 we introduced the syntax for a simple functional programming language and investigated
the problem of converting a character representation of a token to an internal value of type Token. At that
time, however, we only considered converting very simple tokens. There were three remaining problems
listed which we will now consider. You should see this discussion in more general terms. Though we will
look at processing lists of characters, the techniques discussed will often be applicable to more general list
processing.

We found in Example 10.1 that pattern matching is great for processing a fixed number of characters at
the beginning of a string. But it is common to want to access, for example, all leading characters which
meet some specific criterion: all leading characters which are alphabetic (meaning upper or lower case
letters). This general functionality is provided by two polymorphic list functions. The function takeWhile
generalizes head in that it returns the initial substring of characters which satisfy a particular condition
(there is another function takeUntil, with hopefully obvious behavior). dropWhile, on the other hand,
generalizes tail by returning the original string after removing the leading substring of characters satisfying
a particular condition.

To make use of these two new functions it is obviously essential to have a good understanding of how
to specify a “condition”. In the setting of our current example (processing tokens) a condition will be a
boolean function on characters. Some examples are

isPrint :: Char -> Bool -- is a printable character
isSpace :: Char -> Bool -- is a character which prints as a space

or moves the cursor
isUpper :: Char -> Bool -- is an upper case letter
isLower :: Char -> Bool -- is a lower case letter
isAlpha :: Char -> Bool -- is a letter
isDigit :: Char -> Bool -- is one of 0,1,2,3,4,5,6,7,8, or 9
isAlphanum :: Char -> Bool -- is a letter or a digit
(== ’ ’) :: Char -> Bool -- is a blank
(/= ’ ’) :: Char -> Bool -- is not a blank

(see the GHC user’s manual).

10.3.1 removing leading blanks

Now if we revisit the problem of processing a token at the beginning of a string, we can try the following
enhancement of getToken.
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getTOKEN :: String -> (Token, String)

getTOKEN st = getToken st’
where

st’ = dropwhile isSpace st

What this does is to first drop all leading space characters (blanks, tabs, new lines, etc.) and then to
apply our getToken function to a string which we know starts with an actual character. [Question: if we
are worried that some wierd stuff may slip into the file (non-printable characters, for example) how might
you modify this function to accomodate?] Now we can work on getToken with the assumption that a
non-space character is at the head of its argument.

10.3.2 recognizing variable length tokens

We now want to deal with recognizing variable length tokens. In light of the previous sections this seems
straigt forward enough. To handle an identifier just use ‘takeWhile isAlpha’ to access a name string and
‘takeWhile isDigit’ to access a numeric string. In processing a language, however, we must be careful not
to recognize things which should be illegal. For example, identifiers must consist of only letters, no digits
are allowed. So what should be done with a string like ‘factorial123’. Should that be illegal or should
it be seen as indicating factorial applied to 123? For our language the answer is ‘illegal’: identifiers
cannot contain digits. So when we find the head of the input string containing a letter or a digit, we must
first remove the leading sequence of letters and digits and then determine whether this string is legal, i.e.,
consists of all digits or all letters. Notice that this means an identifier or number can only be immediately
followed by an operator, punctuation, or a space character.

The following function is defined assuming that the character at the head of the parameter is a letter and
that every character in the string is a letter or digit. We want to extract the initial sequence of letters,
determine the appropriate token, and then return this token. Of course, if the string contains a digit we
want to return the token Error.

getIdToken :: String -> Token

getIdToken st = if r == []
then Id id
else Error

where
id = takeWhile isAlpha st
r = dropWhile isAlpha st

The function getNumToken, to return a number token, is very similar. You give that a try.

There is one part of the problem which is still not solved. Our function getIdToken returns an identifier
token for every string starting with a letter. But this means that any keyword will be seen as an identifier,
rather than as a keyword. We can easily fix this by defining a new function to be called in the then-clause.
This function will take the string and determine the appropriate token.

convertId2Token :: String -> Token

convertId2Token st
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| st == "IF" = If
| st == "THEN" = Then
| st == "ELSE" = Else
| otherwise = Id st

Example 15 – the completed token extractor

But how do we combine these functions getIdToken and getNumToken into our function
getToken from Example 10.1? Remember that our earlier definition of getToken returned
the error token if an operator or punctuation symbol was not seen as first character. We need
to replace that line with a new definition which takes care of the cases we have just discussed.
Also, our processing will be determined by whether the first character is a letter or a digit (the
only remaining legal alternatives). We would like to be able to do something like this

getToken (id ++ rest) = (token, rest)
where

...

where we use pattern matching to pull off the initial string of letters and digits, as described
above. But this is not allowed; the ++ operator is not legal in a pattern. Also, we need to have
access to the first character of the parameter so we can extract a number or identifier token as
appropriate.

GHC has a convenient mechanism to help us write an elegant definition for this component of
getToken.

getToken st@(ch:_) = (token, rest)
where

rest = dropWhile isAlphanum st
st’ = takeWhile isAlphanum st

token | isAlpha ch = getIdToken st’
| isDigit ch = getNumToken st’
| otherwise = Error

The new bit is ‘getToken st@(ch: )’. The parameter has two new twists. First ignore the st@
part. The rest looks like pattern matching (the ch represents the first character of the list),
but the underscore we haven’t seen before. The underscore in pattern matching means match
the pattern (in this case the rest of the list) but don’t associate a name with it. Of course this
is only reasonable if you don’t want to refer to that part of the parameter. Now, in this case
we do want to be able to refer, not the the part following the leading character, but to the
whole parameter. The st@ notation before a pattern associates a name, in this case st, with
the whole parameter. So the we have two parameter names, st refers to the whole parameter,
while ch refers only to the first character of the parameter.

We can now write down the completed getTOKEN and getToken functions.

getTOKEN :: String -> (Token, String)

getTOKEN st = getToken st’
where
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st’ = dropWhile isSpace st

getToken :: String -> (Token, String)
--
-- we can assume that st has no leading spaces
--

getToken [] = (EOP, [])
getToken (’=’:rest) = (Assign, rest)
getToken (’(’:rest) = (LP, rest)
getToken (’)’:rest) = (RP, rest)
getToken (’.’:rest) = (Period, rest)
getToken (’;’:rest) = (SColon, rest)
getToken (’+’:rest) = (Plus, rest)
getToken (’*’:rest) = (Times, rest)
getToken (’-’:rest) = (Minus, rest)
getToken (’/’:rest) = (Divide, rest)
getToken st@(ch:\_) = (token, rest)

where
rest = dropWhile isAlphanum st
st’ = takeWhile isAlphanum st

token | isAlpha ch = getIdToken st’
| isDigit ch = getNumToken st’
| otherwise = Error

Problem 24

1. Complete the above example by implementing getNumToken and entering all components of the
getTOKEN function into your ‘lexical’ file. Test out your implementation.

2. What if an illegal character appears in your file, e.g., a : or |? This can be dealt with in the
final component of the definition of getToken. Clearly the error token must be returned if a bad
character is seen, but we don’t want to have that character appear at the head of the returned
string. Modify the definition of getToken to accomodate this situation. [Hint: Use the condition
"not isAlphanum" to check for illegal characters. You will have to figure out from the manual how
to write this condition.]

3. Go back to Problem 23.3 in which you were to implement the function convert2Tokens and make
any necessary modifications (e.g., what function should convert2Tokens call?) That function along
with the ones developed above give you a complete tokenizer for our small functional language.
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