CS 210: Principles of Computer Organization

Expanding Op-codes

Consider a ($n+k$)-bit instruction with a k-bit opcode and a single n-bit address. It allows for:

- 2^{k} different operations, and
- $\quad 2^{n}$ addressable memory cells

Example:

1. Design an expanding opcode to allow all of the following to be encoded in a 32-bit instruction:

- 15 instructions with two 12-bit addresses and one 4-bit register number
- 650 instructions with one 12-bit address and one 4-bit register number
- 80 instructions with no addresses or registers

2. Is it possible to design an expanding opcode to allow the following to be encoded in a 12-bit instruction? A register is 3 bits.

- 4 instructions with three registers
- 255 instructions with one register
- 16 instructions with zero registers

3. A certain machine has 16 -bit instructions and 6 -bit addresses. Some instructions have one address and others have two. If there are n two-address instructions, what is the maximum number of one address instructions?
