CS 210: Principles of Computer Organization
Gates and Boolean Algebra

Gate symbols (left) and corresponding truth symbols (below)

Function notation

NOT NAND NOR AND OR _
A D X A_jl A:Z>O*X A—} A:Z>*X e NOTfunction: f=4
FE = 7 5 e ORfunction: f=A4+B

e AND function: f =AB

X alB[x alB]x AlB[x AlB]x e NORfunction: f=A+B
K olo] oot ofo]o ofofo ) —
10 IERE o[1]o0 HERE o114 e NAND function: f = AB
1o+ 1]ao]o 1{o]o 1]ol+
1l1]o0 HEE HERE HEE
Example:

1. Implement a circuit for Boolean function f which takes three inputs, A, B, C, and outputs a 1 if and only
if no more than one of the inputs is a 1.

Functional completeness

A functionally complete set of gates is one which can be used to express all possible truth tables by combining
members of the set into Boolean expression.

e {NOT, AND, OR}is functionally complete.

e {NAND}is functionally complete.

e {NOR} is functionally complete.




1. Label the circuits below with their equivalence to NOT, AND, and OR gates.

e T — e
o = e

Circuit Equivalence:
Two circuits/functions are equivalent if and only if they have the same output for every possible input.

Name AND form OR form
Identity law TA=A 0+A=A
Null law 0A=0 1T+A=1
Idempotent law AA=A A+A=A
Inverse law AR =0 A+A=1
Commutative law | AB = BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+(B+C)
Distributive law A+BC=(A+B)IA+C) |AB+C)=AB+AC
Absorption law AA+B)=A A+AB=A
De Morgan'slaw |AB=A+B A+B=AB

1. Build a circuit for XOR. Can you build it in more than one way?

2. Use a truth table to show that X = (X AND Y) OR (X AND NOT YY)



