CS 210: Principles of Computer Organization

Gates and Boolean Algebra

Gate symbols (left) and corresponding truth symbols (below)

Function notation				
•	NOT function: $f = \overline{A}$			
•	OR function: $f = A + B$			
•	AND function: $f = AB$			
•	NOR function: $f = \overline{A + B}$			
•	NAND function: $f = \overline{AB}$			

Example:

1. Implement a circuit for Boolean function *f* which takes three inputs, *A*, *B*, *C*, and outputs a 1 if and only if no more than one of the inputs is a 1.

Functional completeness

A **functionally complete** set of gates is one which can be used to express all possible truth tables by combining members of the set into Boolean expression.

- {NOT, AND, OR} is functionally complete.
- {NAND} is functionally complete.
- {NOR} is functionally complete.

1. Label the circuits below with their equivalence to NOT, AND, and OR gates.

Circuit Equivalence:

Two circuits/functions are **equivalent** if and only if they have the same output for every possible input.

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	A + Ā = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A+B)+C=A+(B+C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

1. Build a circuit for XOR. Can you build it in more than one way?

2. Use a truth table to show that X = (X AND Y) OR (X AND NOT Y)