Sorting Lower Bounds Linear sorting
 CLRS 8.1-8.4
 (+ some supplemental material)

Comparison-based sorting

- Recall - Sorting
- input: A sequence of n values $x_{1}, x_{2}, \ldots, x_{n}$
- output: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ such that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$
- Many algorithms are comparison based
- they sort by making comparisons between pairs of objects
- ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- best so far runs in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time... can we do better?
- Let's derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements

Counting comparisons

A decision tree represents every sequence of comparisons that an algorithm might make on an input of size n

- each possible run of the algorithm corresponds to a root-to-leaf path
- at each internal node a comparison $x_{i}<x_{j}$ is performed and branching made
- nodes annotated with the orderings consistent with the comparisons made so far
- leaf contains result of computation (a total order of elements)

Decision Tree Example

- Algorithm: insertion sort
- Instance ($\mathrm{n}=3$): the numbers a, b, c

Height of Decision Tree

Theorem: Any decision tree sorting n elements has height $\Omega(n \log n)$.
Proof: There are n ! leaves. A binary tree of height h has at most 2^{h} leaves. So

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!) \\
& \geq c \cdot \log \left(n^{n}\right) \\
& =c \cdot n \log (n)
\end{aligned}
$$

Thus, $h \in \Omega(n \log n)$.

Corollary: Any sorting algorithm that uses only comparisons takes $\Omega(n \log n)$ in the worst case.

Linear time sorting

Any comparison-based sorting algorithm runs in $\Omega(n \log n)$ time in the worst case.

To achieve linear-time sorting of n elements:

- (!!!) Assume keys are integers in the range $[0, k]$
- We can use other operations instead of comparisons
- We can sort in linear time when k is small enough
- Note: we cannot assume this for just any problem with integers !!!

Some sorting algorithms which are not comparison-based

- Counting sort
- Radix sort
- Bucket sort

Counting sort

Input: array $A[1 \ldots n]$ of integers, each in the range $[0, k]$
A $8,3,4,8,12,20,8 \ldots$.
Main idea: Use a counting array \mathbf{C}
First, store frequency of integers in A at their matching index in C

- Ex: $\boldsymbol{C}[\boldsymbol{i}]=\boldsymbol{x}$ if there are \boldsymbol{x} total elements in \boldsymbol{A} with value equal to \boldsymbol{i}

$$
\text { C } \begin{array}{lllllllllllll|}
\hline 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots & \mathrm{k}
\end{array}
$$

Next, combine so that C stores sorted rank (number of items before) at indices

- Ex: $\boldsymbol{C}[\boldsymbol{i}]=\boldsymbol{x}$ if there are \boldsymbol{x} total elements in \boldsymbol{A} with value less than or equal to \boldsymbol{i}

Build a sorted array B which will be returned

- Use rank to determine where the element belongs in B
- For each integer $\boldsymbol{a} \in A$, its rank in \boldsymbol{B} is $\boldsymbol{C}[\boldsymbol{a}] \ldots$ so put \boldsymbol{a} at location $\boldsymbol{B}[\boldsymbol{C}[\boldsymbol{a}]]$
- Decrease $\boldsymbol{C}[\boldsymbol{a}]$ to update rank of future duplicate values

B 3	4	8	8	8				
1	2		4	5	6	7	8	,

Counting sort

Input: array $A[1 \ldots n]$ of integers, each in the range $[0, k]$
Counting-Sort (A, n, k)
Q: How efficient is this?
1 let $B[1: n]$ and $C[0: k]$ be new arrays
2 for $i=0$ to k
Q: Is it in-place?
$3 \quad C[i]=0$
4 for $j=1$ to n
$5 \quad C[A[j]]=C[A[j]]+1$
6 // $C[i]$ now contains the number of elements equal to i.
7 for $i=1$ to k

8

$$
C[i]=C[i]+C[i-1]
$$

// $C[i]$ now contains the number of elements less than or equal to i.
// Copy A to B, starting from the end of A.
11 for $j=n$ downto 1
12
13
$B[C[A[j]]]=A[j]$
$C[A[j]]=C[A[j]]-1 \quad / /$ to handle duplicate values
14 return B
https://algorithm-visualizer.org/divide-and-conquer/counting-sort

Notable properties of counting sort

- Run time:
- $O(n+k)$
- $\boldsymbol{O}(\boldsymbol{n})$ when $\boldsymbol{k}=\boldsymbol{O}(\boldsymbol{n})$
- Ex: if all integers are in the range [0,100n], then counting sort is $O(n)$
- Ex: if all integers are in the range [0, n^{5}], then counting sort is $O\left(n^{5}\right)$
- Ex: if all integers are in the range $\left[0,2^{n}\right.$], then counting sort is $O\left(2^{n}\right)$
- It is stable: numbers with the same value appear in the output array in the same order as they do in the input array
- Important when we are sorting multiple times based on different attributes
- Ex: sort a list of names by first name, then sort by last name
- Ex: Unsorted sequence (B, b, a, c). Suppose $B=b$ and $a<b<c$.
- Stable sorted: (a, B, b, c)
- Unstable sorted: (a, b, B, c)

In general, we can choose two:

Efficient run time complexity

Radix sort

Input: array $A[1 \ldots n]$ of n integers where

- each integer is represented as d keys: $\boldsymbol{x}_{\boldsymbol{d}} \boldsymbol{x}_{\boldsymbol{d} \mathbf{- 1}} \ldots \boldsymbol{x}_{\mathbf{2}} \boldsymbol{x}_{\mathbf{1}}$
- $\boldsymbol{x}_{\boldsymbol{d}}$ is the most significant key/dimension; $\boldsymbol{x}_{\mathbf{1}}$ is the least significant key/dimension
- all $\boldsymbol{n d}$ keys are in the range $[\mathbf{0}, \boldsymbol{k}]$

```
RADIX-SORT \((A, d)\)
1 for \(i=1\) to \(d\)
2 use a stable sort to sort array \(A\) on digit \(i\)
```

Here, we represent an integer key in base 10 (so, all keys are in the range [0,9].
In this case, $d=3$.

329	720	720	329
457	355	329	355
657	436	436	436
839	$\ldots . .$. in.	457	639
436	657	355	457
720	329	457	720
355	839	657	839

Notable properties of radix sort

- Run time:
- $\boldsymbol{O}(\boldsymbol{d}(\boldsymbol{n}+\boldsymbol{k}))$
- $O(n)$ when d is constant and $k=O(n)$
- In the last example, we represented integers in base 10.
- Suppose our maximum integer is N, and $N=O\left(n^{c}\right)$ for a constant c
- Then the number of keys needed for each integer is $d=\log _{10} N=\boldsymbol{O}(\boldsymbol{\operatorname { l o g } n})$
- Total run time: $O(n \log n)$
- We can do better!! What if we represented integer keys in base n ?
- Suppose our maximum integer is N, and $N=O\left(n^{c}\right)$ for a constant c
- Then the number of keys needed for each integer is $\boldsymbol{d}=\boldsymbol{\operatorname { l o g }}_{\boldsymbol{n}} \boldsymbol{N}=\boldsymbol{c}=\boldsymbol{O}(\mathbf{1})$
- Total run time: $O(n)$
- Ex: if all integers are in the range $\left[0, n^{3}\right]$, then representing the integers in base n allows radix sort to run in $O(n)$ time

