Quicksort

CLRS7.1-7.4
(+ some supplemental material)

Pivot
9 3: 15 2 6 8 6| 1 3
<=3 > 3
3| 2 6| 1 3 8 5 9 6
<=1 > 1 <=6 > 6
3 6 1 2 5 6 9 8

Recap

* Divide-and-conquer is a general algorithm design paradigm:
* Divide: divide the input data S into disjoint subsets
* Conquer: solve the subproblems associated with smaller subproblems
* the base case for the recursion are subproblems of size O or 1
* Combine: combine the solutions for subproblems into a solution for S

* Merge sort was a divide and conquer approach
* Divide into 2 lists
* Recursively sort lists
* Merge two now sorted lists into one sorted list

* Our 2 lists were not sorted with respect to each other, so the bottleneck of this
approach was in the merge step.

* What if we were more careful with how we divided starting array?

Quicksort

Quicksort works on an input sequence with n elements and consists of three steps:

* Divide: partition the n-element sequence to be sorted into lists based on a select

pivot element x

» subsequence 1: list of other elements < x
» subsequence 2: list of other elements > x

* Conguer: sort the two subsequences recursively using quicksort

* Combine: subsequences are already sorted internally and with respect to each
other, so no work is needed to combine

<X X > X
p g-1 g g+l r
QUICKSORT(A4, p,r)
1 ifp<r
2 q = PARTITION(A, p,r) Q: How do we partition?
3 QUICKSORT(A4, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

Quicksort is initially called as Quicksort(A, 1, A.length)

Quicksort — Strategy 1 Q: Is this an in-place strategy?

e Use the last element as pivot every time

 Partition the array by scanning it, and create other lists to recur on based on how
values compare to the pivot:

L (less than pivot), E (equal to pivot), G (greater than pivot)

13310157284

312 4 1310 57 8
/
1 2 3 57 8 13 10
/
5 7 10 13
~_
57 10 13
123 57810 13

12345781013

Quicksort partition

* Maintain four partitions

<x > X unrestricted

* As the next item is processed, compare it to the pivot to determine which

subsequence it belongs to

If next item is greater than the pivot
p i J

I =

-
E

—
<x > X

E

<Xx > X

If next item is less than or equal to the pivot

p l J r
I & E
| |
~—
<x > X /

D ' J r
Ix

R/f—/\/’—/
<x > X

PARTITION(A, p,r)

; f ~ A[r]l Q: Is this an in-place strategy?
3 for jp= ptor —1 Yes. It partitions n elements

4 if A[j] <x in-place in O(n) time

5 i =i+1

6 exchange A[i] with A[]]

7 exchange A[i + 1] with A[r]

8 returni + 1

Quicksort run time

* Like mergesort, the non-recursive overhead at each level is O(n)
* This is the cost of the partitioning method

* Q: How many recursive calls can be made in the worst case?

* 0(n) — this happens if we pick a bad pivot each time -- the minimum or
maximum element

* Example: if the list is already sorted
* Worst-case run time: 0(n?) -- happens if we pick a bad pivot each time
* Best-case run time: O(nlogn) -- happens if we pick a good pivot each time

* We can argue about the average case, provided that we know some information
about the input sequence

e Assuming the input list is randomly distributed, we can show that the last
element is usually a good pivot

* In this case, the previous version of quicksort runs in O(nlogn) average time

e Rather than making assumptions about the input, we can instead use a strategy
called randomized quicksort which picks a random pivot each time.

Expected running time of randomized quicksort

Consider a recursive call of quick-sort on a sequence of size s
e Good call: the sizes of L and G are each less than 3s/4
» Bad call: one of L and G has size greater than 3s/4

[123456789101112131415 | (123456789101112131415 |
(1234567] 91011121314 15 1] | 3456789101112131415 |
Good call Bad call

A call is good with probability %4

» 1/2 of the possible pivots cause good calls

* We can show this by visualizing an already sorted list, and counting the number of
good pivots

[1234 5678910111213141516]
—— v 7 N——~

Bad pivots Good pivots Bad pivots

Expected running time of randomized quicksort

Probabilistic Fact: The expected number of coin tosses required in order to get k
heads is 2k.

For a node of depth i, we expect
* (/2 ancestors are good calls
i

: : . 3
* size of the input sequence for the current call is at most (Z)Z n

For a node of depth 2log, /3 n
the expected input size is one

expected height time per level

A

* the expected height of the quick-sort
tree is O(logn)

The amount of work done at the nodes
of the same depth is O(n)

Thus, the expected running time of
randomized quick-sort is O(n logn)

total expected time: O(n log n)

xkcd #1185 — ineffective sorts

DEFINE. HALPHEARTED MERGESORT (LisT):

IF LENGH(LIST) < 2:

RETORN LST
PIVOT = INT (LENGTH(LIST) / 2)
A= mmmmsoer(usrcznvoﬂg
B = HALFHEARTEDMERGE SORT (LiST [PVOT:]
// UMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIM\ZED BOGOSORT
// RONS N O(N LoGN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF 15S0RTED (LIST):
RETURN LisT
RETURN “KERNEL PAGE FRULT (ERROR (PDE: 2)°

DEFNE JOBINTERVEW QUICKSORT (LIsT):

0K 50 You CHOOSE A PVET
THEN DIVIDE THE ST IN HALF
FOR EACH HALF:
(HECX T SEE IF ITS SORED
NO WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PNOT
THE BIGGER ONES GO IN ANBJ ST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO LST B
NOW TAKE THE SECOND (ST
CALL IT ST, UH, A2
WHICH ONE WRAS THE PIVOT IN?
SCRATCH AW THAT
ITJUST RECURSNVELY CAUS ISELF
UNTIL BOTH LSS ARE EMPTY
RIGHT?
NOT" EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UisT):

IF [SSORTED (LiST):
REURN UST

FOR N FROM 1 T© 10000:
PINOT = RANDOM (0, LENGTH(LIST))
LST = usT [PvoT:]+ LIST :PIvoT]
IF 1I5S0RTED(LST):

RETURN UST

IF ISSORTED(LST):
RETURN UST:

IF 1SSORTED (LIST): //THIS CAN'T BE HAPPENING
RETORN LIST

IF ISSORTED (LIST): // COME ON COME ON
RETURN UST

/| OH JEEZ

// T GONNA BE IN 50 MUCH TROUBLE

ust=L1]

SYSTEM (“SHUTDOWN -H +5™)

SYSTEM (“RM -RF /")

SYSTEM (“RM -RF ~/*")

SystEM (“RM -RF /")

SYSTEM(“RD /5 /Q C:*") //PORTRBILITY

RETORN [1,2, 3,4, 5]

Other: nuts and bolts

You are given a collection of n bolts of different widths, and n corresponding nuts.

* You can test whether a given nut and bolt fit together, from which you learn
whether the nut is too large, too small, or an exact match for the bolt.

* The differences in size between pairs of nuts or bolts are too small to see by eye,
so you cannot compare the sizes of two nuts or two bolts directly.

* You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

