
CSCI 200

HW #3: Quick-sort, Radix sort and search trees

Directions: Complete your work on a separate sheet of paper. Submit the physical copy of your work at the beginning of
class. You may work in groups of up to 3 students provided that all students participate in each question. Provide a short
preliminary explanation of how an algorithm works before running an algorithm or presenting a formal algorithm
description, and use examples or diagrams if they are needed to make your presentation clear.

1. (a) What is the running time of the version of quick-sort that uses the element at rank ⌊n/2⌋ as the pivot, provided
that the input sequence is already sorted? Explain.

(b) Does the running time of radix-sort depend on the order of keys in the input? Explain.

2. Suppose you are given the following sorted array: A = [1, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584].
Illustrate the execution of binary search for the number 148.

3. Insert into an initially empty binary search tree items with the following keys (in this order): 30, 40, 23, 58, 48, 26,
11, 13. Draw the single resulting tree after all insertions have been performed.

4. Remove from the binary search tree given below the following keys (in this order): 32, 65, 76, 88, 97. Draw the tree
after each successive removal (5 trees total).

5. A different binary search tree results when we try to insert the same sequence into an empty BST in a different order.
Give an example of this with at least 5 elements and show the two different binary search trees that result. Specify
the order in which the items re inserted to produce the two different trees.

6. Give an algorithm that runs in O(log n) time which takes a sorted array A and two keys, x and z, which may or may
not be elements of A. The algorithm should return the number of elements y in A which satisfy x ≤ y ≤ z.

7. Suppose that we have the numbers between 1 and 1000 in a binary search tree, and we want to search for the number
363. For each of the following sequences, indicate yes/no whether it could be the sequence of nodes examined in
searching for the number 363. If not, explain.

(a) 2, 252, 401, 398, 330, 344, 397, 363

(b) 924, 220, 911, 244, 898, 258, 362, 363

(c) 925, 202, 911, 240, 912, 245, 363

(d) 2, 399, 387, 219, 266, 382, 381, 278, 363

(e) 935, 278, 347, 621, 299, 392, 358, 363

8. Let T be a binary search tree, and let x be a key. Give an efficient algorithm for finding the smallest key y in T such
that y > x. Note that x may or may not be in T . Explain why your algorithm has the running time it does.

1



9. Design and give the pseudocode for an O(log n) algorithm that determines whether a red-black tree with n keys
stores any keys within a certain (closed) interval. That is, the input to the algorithm is a red-black tree T and two
keys, l and r, where l ≤ r. If T has at least one key k such that l ≤ k ≤ r, then the algorithm returns true, otherwise
it returns false. Hint: You can use the recursive or iterative Tree-Search algorithm (CLRS 12.2) as a subroutine.

10. The NIL black leaf is omitted from the visualization in each of the trees shown below. For each tree, specify whether
it is a red black tree (yes) or it is not a red black tree (no). If not, explain.

(a)

(b)

(c)

(d)

(e)

2


