Master Theorem

The Master Theorem applies to recurrences of the following form:

$$
T(n)=\begin{array}{ll}
c, & \text { for } n<d \\
a T(n / b)+f(n), & \text { for } n \geq d
\end{array}
$$

where c and d are constants, $a \geq 1$ and $b>1$ are constants, and $f(n)$ is an asymptotically positive function. Here, a represents the number of sub-problems, n / b is the size of each of those sub-problems, and $f(n)$ is the non-recursive overhead. There are three cases:

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ with $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $f(n)$ satisfies the regularity condition, then $T(n)=\Theta(f(n))$. Regularity condition: $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n.

Assuming the regularity condition holds, another way to think of this is evaluating what we call a critical function $n^{\log _{b} a}$ and comparing it to the non-recursive overhead $f(n)$. Then, the three cases are:

Case	Condition	Result
1.	$n^{\log _{b} a}$ is polynomially larger than $f(n)$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
2.	$n^{\log _{b} a}$ has the same value as $f(n)$, up to some logarithmic power k	$T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3.	$n^{\log _{b} a}$ is polynomially smaller than $f(n)$	$T(n)=\Theta(f(n))$

Practice Problems

1. $T(n)=4 T(n / 2)+n$
2. $T(n)=2 T(n / 2)+n \log n$
3. $T(n)=T(n / 3)+n \log n$
4. $T(n)=8 T(n / 2)+n^{2}$
5. $T(n)=9 T(n / 3)+n^{3}$
6. $T(n)=T(n / 2)+1$
7. $T(n)=2 T(n / 2)+\log n$
8. $T(n)=2 T(n / 2)+1$
9. $T(n)=3 T(n / 2)+n^{2}$
10. $T(n)=4 T(n / 2)+n^{2}$
11. $T(n)=4 T(n / 2)+n^{2} \log ^{2} n$
12. $T(n)=4 T(n / 2)+n^{2}$
13. $T(n)=T(n / 2)+2^{n}$
14. $T(n)=3 T(n / 3)+\sqrt{n}$
15. $T(n)=4 T(n / 2)+c n$, where c is a constant
16. $T(n)=3 T(n / 4)+n \log n$
17. $T(n)=3 T(n / 3)+n / 2$
18. $T(n)=6 T(n / 3)+n^{2} \log n$
19. $T(n)=7 T(n / 3)+n^{2}$
20. $T(n)=2 T(n / 4)+n^{0.51}$
21. $T(n)=9(n / 3)+n^{2} \log ^{4} n$
