Master Theorem

The Master Theorem applies to recurrences of the following form:

$$T(n) = \begin{array}{ll} c, & \text{for } n < d \\ aT(n/b) + f(n), & \text{for } n \ge d \end{array}$$

where c and d are constants, $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function. Here, a represents the number of sub-problems, n/b is the size of each of those sub-problems, and f(n) is the non-recursive overhead. There are three cases:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and f(n) satisfies the regularity condition, then $T(n) = \Theta(f(n))$. Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

Assuming the regularity condition holds, another way to think of this is evaluating what we call a **critical function** $n^{\log_b a}$ and comparing it to the non-recursive overhead f(n). Then, the three cases are:

Case	Condition	Result
1.	$n^{\log_b a}$ is polynomially larger than $f(n)$	$T(n) = \Theta(n^{\log_b a})$
2.	$n^{\log_b a}$ has the same value as $f(n)$, up to some logarithmic power k	$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
3.	$n^{\log_b a}$ is polynomially smaller than $f(n)$	$T(n) = \Theta(f(n))$

Practice Problems

1.
$$T(n) = 4T(n/2) + n$$

2.
$$T(n) = 2T(n/2) + n \log n$$

3.
$$T(n) = T(n/3) + n \log n$$

4.
$$T(n) = 8T(n/2) + n^2$$

5.
$$T(n) = 9T(n/3) + n^3$$

6.
$$T(n) = T(n/2) + 1$$

7.
$$T(n) = 2T(n/2) + \log n$$

8.
$$T(n) = 2T(n/2) + 1$$

9.
$$T(n) = 3T(n/2) + n^2$$

10.
$$T(n) = 4T(n/2) + n^2$$

11.
$$T(n) = 4T(n/2) + n^2 \log^2 n$$

12.
$$T(n) = 4T(n/2) + n^2$$

13.
$$T(n) = T(n/2) + 2^n$$

14.
$$T(n) = 3T(n/3) + \sqrt{n}$$

15.
$$T(n) = 4T(n/2) + cn$$
, where c is a constant

16.
$$T(n) = 3T(n/4) + n \log n$$

17.
$$T(n) = 3T(n/3) + n/2$$

18.
$$T(n) = 6T(n/3) + n^2 \log n$$

19.
$$T(n) = 7T(n/3) + n^2$$

20.
$$T(n) = 2T(n/4) + n^{0.51}$$

21.
$$T(n) = 9(n/3) + n^2 \log^4 n$$

Solutions

1.
$$T(n) = 4T(n/2) + n$$
 Case 1 - $T(n) = \Theta(n^2)$

2.
$$T(n) = 2T(n/2) + n \log n$$
 Case 2 with $k = 1 - T(n) = \Theta(n \log^2 n)$

3.
$$T(n) = T(n/3) + n \log n$$
 Case 3 - $T(n) = \Theta(n \log n)$

4.
$$T(n) = 8T(n/2) + n^2$$
 Case 1 - $T(n) = \Theta(n^3)$

5.
$$T(n) = 9T(n/3) + n^3$$
 Case 3 - $T(n) = \Theta(n^3)$

6.
$$T(n) = T(n/2) + 1$$
 (this is recurrence for binary search) Case 2 with $k = 0$ - $T(n) = \Theta(\log n)$

7.
$$T(n) = 2T(n/2) + \log n$$
 (this is recurrence for heap construction) Case 1 - $T(n) = \Theta(n)$

8.
$$T(n) = 2T(n/2) + 1$$
 Case 1 - $T(n) = \Theta(n)$

9.
$$T(n) = 3T(n/2) + n^2$$
 Case 3 - $T(n) = \Theta(n^2)$

10.
$$T(n) = 4T(n/2) + n^2$$
 Case 2 with $k = 0 - T(n) = \Theta(n^2 \log n)$

11.
$$T(n) = 4T(n/2) + n^2 \log^2 n$$
 Case 2 with $k = 2 - T(n) = \Theta(n^2 \log^3 n)$

12.
$$T(n) = 4T(n/2) + n^2$$
 Case 2 with $k = 0 - T(n) = \Theta(n^2 \log n)$

13.
$$T(n) = T(n/2) + 2^n$$
 Case 3 - $T(n) = \Theta(2^n)$

14.
$$T(n) = 3T(n/3) + \sqrt{n}$$
 Case 1 - $T(n) = \Theta(n)$

15.
$$T(n) = 4T(n/2) + cn$$
, where c is a constant Case 1 - $T(n) = \Theta(n^2)$

16.
$$T(n) = 3T(n/4) + n \log n$$
 Case 3 - $T(n) = \Theta(n \log n)$

17.
$$T(n) = 3T(n/3) + n/2$$
 Case 2 with $k = 0 - T(n) = \Theta(n \log n)$

18.
$$T(n) = 6T(n/3) + n^2 \log n$$
 Case 3 - $T(n) = \Theta(n^2 \log n)$

19.
$$T(n) = 7T(n/3) + n^2$$
 Case 3 - $T(n) = \Theta(n^2)$

20.
$$T(n) = 2T(n/4) + n^{0.51}$$
 Case 3 - $T(n) = \Theta(n^{0.51})$

21.
$$T(n) = 9(n/3) + n^2 \log^4 n$$
 Case 2 with $k = 4$, $T(n) = \Theta(n^2 \log^5 n)$