Single-Source Shortest Path

CLRS 22

(+ some supplemental material)



Graph

* Given a weighted graph and two vertices # and v, we want to find a path of
minimum total weight between u and v.

* Length of a path is the sum of the weights of its edges
* Example: shortest path between Providence and Honolulu

* Applications
* Internet packet routing
* Flight reservations
* Driving directions




Shortest Paths

How to find the shortest route between two points on a map.

Input:

* Directed graph G = (V, E)
* Weight function w : £ — R

Shortest-path weight u to v:

§(u. v) = min{w(p) : u % v} if there exists a path u ~> v ,

o0 otherwise .

Shortest path u to v is any path p such that w(p) = d(u, v).



Example: shortest paths from s

This example shows that a shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.



Shortest Path Trees = Minimum Spanning Trees

Consider the following graph.

O

Shortest path tree (rooted at A) MST
@&——® &——®
o Wk 0 \ W
2) @
@ S IC> @ S @



Negative Weight Edges

OK, as long as no negative-weight cycles are reachable from the source.

* If we have a negative-weight cycle, we can just keep going around it, and get
w(s,v) = —oo for all v on the cycle.

* But OK if the negative-weight cycle is not reachable from the source.

* Some algorithms work only if there are no negative-weight edges in the graph.
We’ll be clear when they’re allowed and not allowed.



OPTIMAL SUBSTRUCTURE

Lemma
Any subpath of a shortest path 1s a shortest path.

Proof Cut-and-paste.

@ADL A

: P
Now suppose there exists a shorter path x ~> .

Then w(p’,) < w(pxy).
Construct p’:

@ Pux e P ’xy 0 P YU 0

Contradicts the assumption that p is a shortest path.



CYCLES

Shortest paths can’t contain cycles:

* Already ruled out negative-weight cycles.
* Positive-weight = we can get a shorter path by omitting the cycle.

* (-weight: no reason to use them = assume that our solutions won’t use them.



OUTPUT OF SINGLE-SOURCE SHORTEST-
PATH ALGORITHM

For each vertex v € V:
e v.d =64(s,v).

* Initially, v.d = oo.
* Reduces as algorithms progress. But always maintain v.d > §(s, v).
* Call v.d a shortest-path estimate.

* v.m = predecessor of v on a shortest path from s.

* If no predecessor, v.7 = NIL.
* 1 induces a tree —shortest-path tree.



INITIALIZATION

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE.

INITIALIZE-SINGLE-SOURCE(G, $)

1 for each vertex v € G.V
2 v.d = 00

3 V.7T = NIL

4 s.d =20



RELAXING AN EDGE (u,v)

Can the shortest-path estimate for v be improved by going through u and taking
(u,v)?

u v u v

RELAX(u, v, w)

1 ifv.d>u.d+ w(u, U) RELAX (1, v, w) RELAX(u, v, w)
2 v.d = u.d+w(u,v)
3 V.T = U - ’ : ;

——@

(a) (b)

11



RELAXING AN ED GE (continued)

For all the single-source shortest-paths algorithms we’ll look at,

* start by calling INITIALIZE-SINGLE-SOURCE,
* then relax edges.

The algorithms differ in the order and how many times they relax each edge.

12



SHORTEST-PATHS PROPERTIES

Based on calling INITIALIZE-SINGLE-SOURCE once and then calling RELAX zero
or more times.

Triangle inequality: For all (1,v) € E,we have 6(s,v) < §(s,u) + w(u,v).

Upper-bound property: Always have v.d > §(s,v) for all v. Once v.d gets
down to §(s, v), it never changes.

No-path property: If 6(s,v) = oo, then v.d = oo always.

Convergence property: If s ~» u — v is a shortest path, u.d = 6(s,u), and
edge (u, v) is relaxed, then v.d = §(s, v) afterward.

Path-relaxation property: Let p = (vo, vy, ..., vr) be a shortest path from
s = vg to vg. If the edges of p are relaxed, in the order, (vg,vy), (v, V1),
..., (vr_1. V), even intermixed with other relaxations, then vi.d = §(s, vy).

13



THE BELLMAN-FORD ALGORITHM

Allows negative-weight edges.
Computes v.d and v.7r forallv € V.

Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

14



THE BELLMAN-FORD ALGORITHM

(continued)

BELLMAN-FORD (G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E

6 ifv.d>u.d+ w(u,v)

7 return FALSE

8 return TRUE

Time: O(V?* + VE). The first for loop makes |V| — 1 passes over the edges,
and each pass takes @ (V + E') time. We use O rather than ® because sometimes
< |V | — 1 passes are enough (Exercise 22.1-3).

15

So, in a connected graph Bellman-Ford runs in O(nm) time



EXAMPLE




SINGLE-SOURCE SHORTEST PATHS IN A

DIRECTED ACYCLIC GRAPH

Since a dag, we’re guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS (G, w, 5)

1
2
3
4
5

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, $)
for each vertex u € G.V, taken in topologically sorted order
for each vertex v in G.Adj[u]
RELAX(u, v, w)

17



EXAMPLE

Time
OV + E).

Correctness

Because vertices are processed in topologically sorted order, edges of any path
must be relaxed in order of appearance in the path.

= Edges on any shortest path are relaxed in order.
= By path-relaxation property, correct.

So, in a connected DAG, the DAG-based algorithm runs in O(m) time

18



DIJKSTRA’S ALGORITHM

No negative-weight edges.
Essentially a weighted version of breadth-first search.

* Instead of a FIFO queue, uses a priority queue.
* Keys are shortest-path weights (v.d).

Can think of waves, like BES.
A wave emanates from the source.

The first time that a wave arrives at a vertex, a new wave emanates from that
vertex.

Have two sets of vertices:

* § = vertices whose final shortest-path weights are determined,
* (Q = priority queue = V — §.

19



DIJ KSTRA, S ALGORITHM (continued)

DUKSTRA(G, w, )

1
2
3
4
5
6
7
8
9

10
11
12

INITIALIZE-SINGLE-SOURCE(G, §)

S =40

Q=290

for each vertex u € G.V
INSERT(Q, u)

while O # 0
u = EXTRACT-MIN(Q)
S =S U{u}

for each vertex v in G.Adj[u]
RELAX(u, v, w)
if the call of RELAX decreased v.d
DECREASE-KEY (Q, v, v.d)

20



DIJ KSTRA, S ALGORITHM (continued)

* Looks a lot like Prim’s algorithm, but computing v.d, and using shortest-path
weights as keys.

* Dijkstra’s algorithm can be viewed as greedy, since it always chooses the “light-
est” (“closest”?) vertex in V' — S toadd to §S'.

Like Prim’s algorithm, Dijkstra’s algorithm runs in O(m log n) time on a connected
graph if we use a binary heap to implement the priority queue.

21



EXAMPLE

Correctness

The algorithm extracts vertices from
the heap in order of shortest
distance from the source.
Inductively, if the algorithm has
found the shortest paths to some

Y set S, the shortest path to the
Order of adding to S: s, y, Z, x. closest vertex in V-S can be found
by appending a single edge to a
path to some vertex in S.




