Single-Source Shortest Path

CLRS 22

(+ some supplemental material)

Graph

- Given a weighted graph and two vertices *u* and *v*, we want to find a path of minimum total weight between *u* and *v*.
 - Length of a path is the sum of the weights of its edges
- Example: shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations
 - Driving directions

Shortest Paths

How to find the shortest route between two points on a map.

Input:

- Directed graph G = (V, E)
- Weight function $w: E \to \mathbb{R}$

Shortest-path weight *u* to *v*:

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\rightsquigarrow} v\} & \text{if there exists a path } u \rightsquigarrow v , \\ \infty & \text{otherwise }. \end{cases}$$

Shortest path *u* to *v* is any path *p* such that $w(p) = \delta(u, v)$.

Example: shortest paths from s

This example shows that a shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Shortest Path Trees **!=** Minimum Spanning Trees

Consider the following graph.

Shortest path tree (rooted at A)

Negative Weight Edges

OK, as long as no negative-weight cycles are reachable from the source.

- If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.
- But OK if the negative-weight cycle is not reachable from the source.
- Some algorithms work only if there are no negative-weight edges in the graph. We'll be clear when they're allowed and not allowed.

OPTIMAL SUBSTRUCTURE

Lemma

Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.

Now suppose there exists a shorter path $x \stackrel{p'_{xy}}{\leadsto} y$. Then $w(p'_{xy}) < w(p_{xy})$.

Construct p':

Contradicts the assumption that p is a shortest path.

CYCLES

Shortest paths can't contain cycles:

- Already ruled out negative-weight cycles.
- Positive-weight \Rightarrow we can get a shorter path by omitting the cycle.
- 0-weight: no reason to use them \Rightarrow assume that our solutions won't use them.

OUTPUT OF SINGLE-SOURCE SHORTEST-PATH ALGORITHM

For each vertex $v \in V$:

- $v.d = \delta(s, v).$
 - Initially, $v.d = \infty$.
 - Reduces as algorithms progress. But always maintain $v.d \ge \delta(s, v)$.
 - Call *v*.*d* a *shortest-path estimate*.
- $v.\pi$ = predecessor of v on a shortest path from s.
 - If no predecessor, $v.\pi = \text{NIL}$.
 - π induces a tree—*shortest-path tree*.

INITIALIZATION

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE.

INITIALIZE-SINGLE-SOURCE(G, s)1 for each vertex $v \in G.V$ 2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4 s.d = 0

RELAXING AN EDGE (*u*,*v*)

Can the shortest-path estimate for v be improved by going through u and taking (u, v)?

$RELAXING \ AN \ EDGE \ (\text{continued})$

For all the single-source shortest-paths algorithms we'll look at,

- start by calling INITIALIZE-SINGLE-SOURCE,
- then relax edges.

The algorithms differ in the order and how many times they relax each edge.

SHORTEST-PATHS PROPERTIES

Based on calling INITIALIZE-SINGLE-SOURCE once and then calling RELAX zero or more times.

Triangle inequality: For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Upper-bound property: Always have $v.d \ge \delta(s, v)$ for all v. Once v.d gets down to $\delta(s, v)$, it never changes.

No-path property: If $\delta(s, v) = \infty$, then $v \cdot d = \infty$ always.

Convergence property: If $s \rightsquigarrow u \rightarrow v$ is a shortest path, $u.d = \delta(s, u)$, and edge (u, v) is relaxed, then $v.d = \delta(s, v)$ afterward.

Path-relaxation property: Let $p = \langle v_0, v_1, \ldots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If the edges of p are relaxed, *in the order*, $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then $v_k d = \delta(s, v_k)$.

THE BELLMAN-FORD ALGORITHM

- Allows negative-weight edges.
- Computes v.d and $v.\pi$ for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from *s*, FALSE otherwise.

THE BELLMAN-FORD ALGORITHM (continued)

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE(G, s)
1
   for i = 1 to |G.V| - 1
2
       for each edge (u, v) \in G.E
3
            \operatorname{RELAX}(u, v, w)
4
  for each edge (u, v) \in G.E
5
       if v.d > u.d + w(u, v)
6
            return FALSE
7
   return TRUE
8
```

Time: $O(V^2 + VE)$. The first **for** loop makes |V| - 1 passes over the edges, and each pass takes $\Theta(V + E)$ time. We use O rather than Θ because sometimes < |V| - 1 passes are enough (Exercise 22.1-3).

So, in a connected graph Bellman-Ford runs in O(nm) time

EXAMPLE

SINGLE-SOURCE SHORTEST PATHS IN A DIRECTED ACYCLIC GRAPH

Since a dag, we're guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex $u \in G.V$, taken in topologically sorted order
- 4 **for** each vertex v in G.Adj[u]
- 5 RELAX(u, v, w)

EXAMPLE

Time

 $\Theta(V+E).$

Correctness

Because vertices are processed in topologically sorted order, edges of *any* path must be relaxed in order of appearance in the path.

- \Rightarrow Edges on any shortest path are relaxed in order.
- \Rightarrow By path-relaxation property, correct.

So, in a connected DAG, the DAG-based algorithm runs in **O(m) time**

DIJKSTRA'S ALGORITHM

No negative-weight edges.

Essentially a weighted version of breadth-first search.

- Instead of a FIFO queue, uses a priority queue.
- Keys are shortest-path weights (v.d).
- Can think of waves, like BFS.
- A wave emanates from the source.
- The first time that a wave arrives at a vertex, a new wave emanates from that vertex.

Have two sets of vertices:

- S = vertices whose final shortest-path weights are determined,
- Q = priority queue = V S.

$DIJKSTRA'S \ ALGORITHM \ ({\tt continued})$

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 $S = \emptyset$
- 3 $Q = \emptyset$
- 4 **for** each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- 7 u = EXTRACT-MIN(Q)
- 8 $S = S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 $\operatorname{RELAX}(u, v, w)$
- 11 **if** the call of RELAX decreased v.d
- 12 DECREASE-KEY(Q, v, v.d)

$DIJKSTRA'S \ ALGORITHM \ ({\tt continued})$

- Looks a lot like Prim's algorithm, but computing v.d, and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" ("closest"?) vertex in V - S to add to S.

Like Prim's algorithm, Dijkstra's algorithm runs in **O(m log n) time** on a connected graph if we use a binary heap to implement the priority queue.

EXAMPLE

Order of adding to S: s, y, z, x.

Correctness

The algorithm extracts vertices from the heap in order of shortest distance from the source. Inductively, if the algorithm has found the shortest paths to some set *S*, the shortest path to the closest vertex in *V-S* can be found by appending a single edge to a path to some vertex in *S*.