Single-Source Shortest Path

CLRS 22

(+ some supplemental material)



Graph

* Given a weighted graph and two vertices # and v, we want to find a path of
minimum total weight between u and v.

* Length of a path is the sum of the weights of its edges
* Example: shortest path between Providence and Honolulu

* Applications
* Internet packet routing
* Flight reservations
* Driving directions




Shortest Paths

How to find the shortest route between two points on a map.

Input:

* Directed graph G = (V, E)
* Weight function w : £ — R

Shortest-path weight u to v:

§(u. v) = min{w(p) : u % v} if there exists a path u ~> v ,

o0 otherwise .

Shortest path u to v is any path p such that w(p) = d(u, v).



Example: shortest paths from s

This example shows that a shortest path might not be unique.

It also shows that when we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.



Shortest Path Trees = Minimum Spanning Trees

Consider the following graph.
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Negative Weight Edges

OK, as long as no negative-weight cycles are reachable from the source.

* If we have a negative-weight cycle, we can just keep going around it, and get
w(s,v) = —oo for all v on the cycle.

* But OK if the negative-weight cycle is not reachable from the source.

* Some algorithms work only if there are no negative-weight edges in the graph.
We’ll be clear when they’re allowed and not allowed.



OPTIMAL SUBSTRUCTURE

Lemma
Any subpath of a shortest path 1s a shortest path.

Proof Cut-and-paste.
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Now suppose there exists a shorter path x ~> .

Then w(p’,) < w(pxy).
Construct p’:

@ Pux e P ’xy 0 P YU 0

Contradicts the assumption that p is a shortest path.



CYCLES

Shortest paths can’t contain cycles:

* Already ruled out negative-weight cycles.
* Positive-weight = we can get a shorter path by omitting the cycle.

* (-weight: no reason to use them = assume that our solutions won’t use them.



OUTPUT OF SINGLE-SOURCE SHORTEST-
PATH ALGORITHM

For each vertex v € V:
e v.d =64(s,v).

* Initially, v.d = oo.
* Reduces as algorithms progress. But always maintain v.d > §(s, v).
* Call v.d a shortest-path estimate.

* v.m = predecessor of v on a shortest path from s.

* If no predecessor, v.7 = NIL.
* 1 induces a tree —shortest-path tree.



INITIALIZATION

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE.

INITIALIZE-SINGLE-SOURCE(G, $)

1 for each vertex v € G.V
2 v.d = 00

3 V.7T = NIL

4 s.d =20



RELAXING AN EDGE (u,v)

Can the shortest-path estimate for v be improved by going through u and taking
(u,v)?

u v u v

RELAX(u, v, w)

1 ifv.d>u.d+ w(u, U) RELAX (1, v, w) RELAX(u, v, w)
2 v.d = u.d+w(u,v)
3 V.T = U - ’ : ;

——@

(a) (b)
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RELAXING AN ED GE (continued)

For all the single-source shortest-paths algorithms we’ll look at,

* start by calling INITIALIZE-SINGLE-SOURCE,
* then relax edges.

The algorithms differ in the order and how many times they relax each edge.
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SHORTEST-PATHS PROPERTIES

Based on calling INITIALIZE-SINGLE-SOURCE once and then calling RELAX zero
or more times.

Triangle inequality: For all (1,v) € E,we have 6(s,v) < §(s,u) + w(u,v).

Upper-bound property: Always have v.d > §(s,v) for all v. Once v.d gets
down to §(s, v), it never changes.

No-path property: If 6(s,v) = oo, then v.d = oo always.

Convergence property: If s ~» u — v is a shortest path, u.d = 6(s,u), and
edge (u, v) is relaxed, then v.d = §(s, v) afterward.

Path-relaxation property: Let p = (vo, vy, ..., vr) be a shortest path from
s = vg to vg. If the edges of p are relaxed, in the order, (vg,vy), (v, V1),
..., (vr_1. V), even intermixed with other relaxations, then vi.d = §(s, vy).
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THE BELLMAN-FORD ALGORITHM

Allows negative-weight edges.
Computes v.d and v.7r forallv € V.

Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.
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THE BELLMAN-FORD ALGORITHM

(continued)

BELLMAN-FORD (G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E

6 ifv.d>u.d+ w(u,v)

7 return FALSE

8 return TRUE

Time: O(V?* + VE). The first for loop makes |V| — 1 passes over the edges,
and each pass takes @ (V + E') time. We use O rather than ® because sometimes
< |V | — 1 passes are enough (Exercise 22.1-3).
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So, in a connected graph Bellman-Ford runs in O(nm) time



EXAMPLE




SINGLE-SOURCE SHORTEST PATHS IN A

DIRECTED ACYCLIC GRAPH

Since a dag, we’re guaranteed no negative-weight cycles.

DAG-SHORTEST-PATHS (G, w, 5)

1
2
3
4
5

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, $)
for each vertex u € G.V, taken in topologically sorted order
for each vertex v in G.Adj[u]
RELAX(u, v, w)
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EXAMPLE

Time
OV + E).

Correctness

Because vertices are processed in topologically sorted order, edges of any path
must be relaxed in order of appearance in the path.

= Edges on any shortest path are relaxed in order.
= By path-relaxation property, correct.

So, in a connected DAG, the DAG-based algorithm runs in O(m) time
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DIJKSTRA’S ALGORITHM

No negative-weight edges.
Essentially a weighted version of breadth-first search.

* Instead of a FIFO queue, uses a priority queue.
* Keys are shortest-path weights (v.d).

Can think of waves, like BES.
A wave emanates from the source.

The first time that a wave arrives at a vertex, a new wave emanates from that
vertex.

Have two sets of vertices:

* § = vertices whose final shortest-path weights are determined,
* (Q = priority queue = V — §.
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DIJ KSTRA, S ALGORITHM (continued)

DUKSTRA(G, w, )

1
2
3
4
5
6
7
8
9

10
11
12

INITIALIZE-SINGLE-SOURCE(G, §)

S =40

Q=290

for each vertex u € G.V
INSERT(Q, u)

while O # 0
u = EXTRACT-MIN(Q)
S =S U{u}

for each vertex v in G.Adj[u]
RELAX(u, v, w)
if the call of RELAX decreased v.d
DECREASE-KEY (Q, v, v.d)
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DIJ KSTRA, S ALGORITHM (continued)

* Looks a lot like Prim’s algorithm, but computing v.d, and using shortest-path
weights as keys.

* Dijkstra’s algorithm can be viewed as greedy, since it always chooses the “light-
est” (“closest”?) vertex in V' — S toadd to §S'.

Like Prim’s algorithm, Dijkstra’s algorithm runs in O(m log n) time on a connected
graph if we use a binary heap to implement the priority queue.
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EXAMPLE

Correctness

The algorithm extracts vertices from
the heap in order of shortest
distance from the source.
Inductively, if the algorithm has
found the shortest paths to some

Y set S, the shortest path to the
Order of adding to S: s, y, Z, x. closest vertex in V-S can be found
by appending a single edge to a
path to some vertex in S.




