Single-Source Shortest Path

CLRS 22
(+ some supplemental material)

Graph

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.
- Length of a path is the sum of the weights of its edges
- Example: shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Paths

How to find the shortest route between two points on a map.

Input:

- Directed graph $G=(V, E)$
- Weight function $w: E \rightarrow \mathbb{R}$

Shortest-path weight u to v :
$\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there exists a path } u \leadsto v, \\ \infty & \text { otherwise . }\end{cases}$
Shortest path u to v is any path p such that $w(p)=\delta(u, v)$.

Example: shortest paths from s

This example shows that a shortest path might not be unique.
It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Shortest Path Trees != Minimum Spanning Trees

Consider the following graph.

Shortest path tree (rooted at A)

Negative Weight Edges

OK, as long as no negative-weight cycles are reachable from the source.

- If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v)=-\infty$ for all v on the cycle.
- But OK if the negative-weight cycle is not reachable from the source.
- Some algorithms work only if there are no negative-weight edges in the graph. We'll be clear when they're allowed and not allowed.

OPTIMAL SUBSTRUCTURE

Lemma

Any subpath of a shortest path is a shortest path.
Proof Cut-and-paste.

Now suppose there exists a shorter path $x \xrightarrow[\sim]{p_{x y}^{\prime}} y$.
Then $w\left(p_{x y}^{\prime}\right)<w\left(p_{x y}\right)$.
Construct p^{\prime} :

Contradicts the assumption that p is a shortest path.

CYCLES

Shortest paths can't contain cycles:

- Already ruled out negative-weight cycles.
- Positive-weight \Rightarrow we can get a shorter path by omitting the cycle.
- 0-weight: no reason to use them \Rightarrow assume that our solutions won't use them.

OUTPUT OF SINGLE-SOURCE SHORTESTPATH ALGORITHM

For each vertex $v \in V$:

- $v . d=\delta(s, v)$.
- Initially, v. $d=\infty$.
- Reduces as algorithms progress. But always maintain $v . d \geq \delta(s, v)$.
- Call v.d a shortest-path estimate.
- $\quad v . \pi=$ predecessor of v on a shortest path from s.
- If no predecessor, $v . \pi=$ NIL.
- π induces a tree-shortest-path tree.

INITIALIZATION

All the shortest-paths algorithms start with Initialize-Single-Source.
Initialize-Single-Source (G, s)
1 for each vertex $v \in G . V$
$2 \quad v . d=\infty$
$3 \quad v . \pi=\mathrm{NIL}$
$4 \quad$ s.d $=0$

RELAXING AN EDGE (u, v)

Can the shortest-path estimate for v be improved by going through u and taking (u, v)?

$\operatorname{Relax}(u, v, w)$
1 if $v . d>u . d+w(u, v)$
$v . d=u . d+w(u, v)$
$v . \pi=u$

(a)

(b)

RELAXING AN EDGE (continued)

For all the single-source shortest-paths algorithms we'll look at,

- start by calling Initialize-Single-Source,
- then relax edges.

The algorithms differ in the order and how many times they relax each edge.

SHORTEST-PATHS PROPERTIES

Based on calling Initialize-Single-Source once and then calling Relax zero or more times.

Triangle inequality: For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
Upper-bound property: Always have $v . d \geq \delta(s, v)$ for all v. Once $v . d$ gets down to $\delta(s, v)$, it never changes.

No-path property: If $\delta(s, v)=\infty$, then $v \cdot d=\infty$ always.
Convergence property: If $s \leadsto u \rightarrow v$ is a shortest path, $u . d=\delta(s, u)$, and edge (u, v) is relaxed, then $v \cdot d=\delta(s, v)$ afterward.

Path-relaxation property: Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from $s=v_{0}$ to v_{k}. If the edges of p are relaxed, in the order, $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right)$, $\ldots,\left(v_{k-1}, v_{k}\right)$, even intermixed with other relaxations, then $v_{k} \cdot d=\delta\left(s, v_{k}\right)$.

THE BELLMAN-FORD ALGORITHM

- Allows negative-weight edges.
- Computes $v . d$ and $v . \pi$ for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

THE BELLMAN-FORD ALGORITHM (continued)

```
BELLMAN-Ford \((G, w, s)\)
    Initialize-Single-Source \((G, s)\)
    for \(i=1\) to \(|G . V|-1\)
    for each edge \((u, v) \in G . E\)
        \(\operatorname{RELAX}(u, v, w)\)
    for each edge \((u, v) \in G . E\)
    if \(v . d>u . d+w(u, v)\)
        return FALSE
    return TRUE
```

Time: $O\left(V^{2}+V E\right)$. The first for loop makes $|V|-1$ passes over the edges, and each pass takes $\Theta(V+E)$ time. We use O rather than Θ because sometimes $<|V|-1$ passes are enough (Exercise 22.1-3).

EXAMPLE

SINGLE-SOURCE SHORTEST PATHS IN A DIRECTED ACYCLIC GRAPH

Since a dag, we're guaranteed no negative-weight cycles.
Dag-Shortest-Paths (G, w, s)
1 topologically sort the vertices of G
2 Initialize-Single-Source (G, s)
3 for each vertex $u \in G . V$, taken in topologically sorted order
4 for each vertex v in $G . \operatorname{Adj}[u]$
$5 \quad \operatorname{ReLAX}(u, v, w)$

EXAMPLE

Time

$\Theta(V+E)$.

Correctness

Because vertices are processed in topologically sorted order, edges of any path must be relaxed in order of appearance in the path.
\Rightarrow Edges on any shortest path are relaxed in order.
\Rightarrow By path-relaxation property, correct.

So, in a connected DAG, the DAG-based algorithm runs in O(m) time

DIJKSTRA'S ALGORITHM

No negative-weight edges.
Essentially a weighted version of breadth-first search.

- Instead of a FIFO queue, uses a priority queue.
- Keys are shortest-path weights (v.d).
- Can think of waves, like BFS.
- A wave emanates from the source.
- The first time that a wave arrives at a vertex, a new wave emanates from that vertex.

Have two sets of vertices:

- $S=$ vertices whose final shortest-path weights are determined,
- $Q=$ priority queue $=V-S$.

DIJKSTRA'S ALGORITHM (coninued)

Dijkstra (G, w, s)

```
InItIALIZE-SINGLE-SoURCE (G,s)
S=\emptyset
Q = \emptyset
for each vertex }u\inG.
    INSERT(Q,u)
while Q\not=\emptyset
    u = Extract-Min(Q)
    S=S\cup{u}
    for each vertex v in G.Adj[u]
        RELAX (u,v,w)
        if the call of RELAX decreased v.d
            DECREASE-KEY(Q,v,v.d)
```


DIJKSTRA'S ALGORITHM (continued)

- Looks a lot like Prim's algorithm, but computing v.d, and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" ("closest"?) vertex in $V-S$ to add to S.

Like Prim's algorithm, Dijkstra's algorithm runs in $\mathbf{O}(\mathbf{m} \log \mathrm{n})$ time on a connected graph if we use a binary heap to implement the priority queue.

EXAMPLE

Order of adding to $S: s, y, z, x$.

Correctness

The algorithm extracts vertices from the heap in order of shortest distance from the source. Inductively, if the algorithm has found the shortest paths to some set S, the shortest path to the closest vertex in V-S can be found by appending a single edge to a path to some vertex in S.

