
MST
CLRS 21

(+ some supplemental material)

Overview

Minimum Spanning Tree
Spanning subgraph: subgraph of a graph G containing all the

vertices of G

Spanning tree: spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST): spanning tree of a weighted
graph with minimum total edge weight
• It has |V|-1 edges.
• It has no cycles.
• It might not be unique.

Applications
• Communications networks
• Transportation networks

G

F

D

C

A

B

E

10
1

9

8

6

3

2
5

7

4

Cycle Property
Cycle Property:
• Let T be a minimum spanning tree of a weighted graph G
• Let e be an edge of G that is not in T and C let be the cycle formed by e with T
• For every edge f of C, weight(f) £ weight(e)

Proof:
• By contradiction
• If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

4

2 3
6

7

7

9

8

C

e

Replacing f with e
yields a better
spanning tree

Partition Property
Partition Property:
• Consider a partition of the vertices of G into

subsets U and V
• Let e be an edge of minimum weight across

the partition
• There is a minimum spanning tree of G

containing edge e

Proof:
• Let T be an MST of G
• If T does not contain e, consider the cycle C

formed by e with T and let f be an edge of C
across the partition
• By the cycle property, weight(f) £ weight(e)
• Thus, weight(f) = weight(e)
• We obtain another MST by replacing f with e

U V

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

Kruskal’s Algorithm

A priority queue stores the edges
outside the cloud
• Key: weight
• Element: edge

Minimum Spanning Tree 6

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of ß {v}
let Q be a priority queue
Insert all edges into Q using their weights as the key
T ß Æ
while T has fewer than n-1 edges do

edge e = Q.removeMin()
Let u, v be the endpoints of e
{ check if edge is necessary to connect two clouds }
if Cloud(v) ¹ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

At the end of the algorithm
• We are left with one cloud that

encompasses the MST
• A tree T which is our MST

Minimum Spanning Tree 7

Data Structure for Kruskal Algortihm

• The algorithm maintains a forest of trees
• An edge is accepted it if connects distinct trees
• We need a data structure that maintains a partition, i.e., a collection of

disjoint sets, with the operations:
• find(u): return the set storing u
• union(u,v): replace the sets storing u and v with their union

Minimum Spanning Tree 8

Representation of a Partition

• Each set is stored in a sequence

• Each element has a reference back to the set
• operation find(u) takes O(1) time, and returns the set of which u is a

member.
• in operation union(u,v), we move the elements of the smaller set to the

sequence of the larger set and update their references
• the time for operation union(u,v) is min(nu, nv), where nu and nv are the

sizes of the sets storing u and v

• Whenever an element is processed, it goes into a set of size at least double,
hence each element is processed at most logn times

Minimum Spanning Tree 9

Partition-Based Implementation

A partition-based version of Kruskalʼs Algorithm performs cloud merges as
unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ¬ Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time: O(m log n)

1
2
3
4
5
6
7
8
9

Minimum Spanning Tree 10

Kruskal Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Minimum Spanning Tree 11

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 12

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 13

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 14

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 15

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 16

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 17

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 18

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 19

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 20

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 21

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 22

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Minimum Spanning Tree 23

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Prim-Jarnik’s Algorithm

Idea:
• Builds one tree
• Pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting

from s
• Store with each vertex v a label d(v) = the smallest weight of an edge connecting

v to a vertex in the cloud

At each step:
• Add to the cloud the vertex u outside

the cloud with the smallest label
• Update the labels of the vertices

adjacent to u

Prim-Jarnik’s Algorithm (continued)

A priority queue stores the vertices
outside the cloud
• Key: distance
• Element: vertex

Locator-based methods
• insert(k,e) returns a locator
• replaceKey(l,k) changes the key of an

item

We store three labels with each
vertex:
• Distance
• Parent edge in MST
• Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ¬ new heap-based priority queue
s ¬ a vertex of G
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

setParent(v, Æ)
l ¬ Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ¬ Q.removeMin()
for all e Î G.incidentEdges(u)

z ¬ G.opposite(u,e)
r ¬ weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Running time: O(m log n)

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ¥

¥

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ¥

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ¥

7

Example (continued)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

Minimum Spanning Tree 28

There’s a long list of cities that Santa Claus needs to visit, and he only has
from now until Christmas to figure out a good route to take. Use
techniques you have learned in this course to give an efficient algorithm
that will find a guaranteed short route starting from the North Pole that
will visit every city and come back to the North Pole again. You don’t need
to find the (optimal) shortest route, but you can guarantee that you will
always come close to the shortest route. This is known as an approximation
algorithm. For example, a 10-approximation algorithm would produce a
route whose length is no more than 10 times the length of the shortest
route.

1. How does your algorithm work?
2. What is the running time of your algorithm?
3. How closely does your algorithm approximate the optimal route?

