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Overview



Minimum Spanning Tree
Spanning subgraph: subgraph of a graph G containing all the 

vertices of G

Spanning tree: spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST): spanning tree of a weighted 
graph with minimum total edge weight
• It has |V|-1 edges.
• It has no cycles.
• It might not be unique.

Applications
• Communications networks
• Transportation networks
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Cycle Property
Cycle Property:
• Let T be a minimum spanning tree of a weighted graph G
• Let e be an edge of G that is not in T and C let be the cycle formed by e with T
• For every edge f of C, weight(f) £ weight(e)

Proof:
• By contradiction
• If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f
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Partition Property
Partition Property:
• Consider a partition of the vertices of G into 

subsets U and V
• Let e be an edge of minimum weight across 

the partition
• There is a minimum spanning tree of G

containing edge e

Proof:
• Let T be an MST of G
• If T does not contain e, consider the cycle C

formed by e with T and let  f be an edge of C
across the partition
• By the cycle property,  weight(f) £ weight(e)
• Thus, weight(f) = weight(e)
• We obtain another MST by replacing f  with e
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Kruskal’s Algorithm

A priority queue stores the edges 
outside the cloud
• Key: weight
• Element: edge
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Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of ß {v}
let Q be a priority queue
Insert all edges into Q using their weights as the key
T ß Æ
while T has fewer than n-1 edges do

edge e = Q.removeMin()
Let u, v be the endpoints of e
{ check if edge is necessary to connect two clouds }
if Cloud(v) ¹ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

At the end of the algorithm
• We are left with one cloud that 

encompasses the MST
• A tree T which is our MST
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Data Structure for Kruskal Algortihm

• The algorithm maintains a forest of trees
• An edge is accepted it if connects distinct trees
• We need a data structure that maintains a partition, i.e., a collection of 

disjoint sets, with the operations:
• find(u): return the set storing u
• union(u,v): replace the sets storing u and v with their union
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Representation of a Partition

• Each set is stored in a sequence

• Each element has a reference back to the set
• operation find(u) takes O(1) time, and returns the set of which u is a 

member.
• in operation union(u,v), we move the elements of the smaller set to the 

sequence of the larger set and update their references
• the time for operation union(u,v) is min(nu, nv), where nu and nv are the 

sizes of the sets storing u and v

• Whenever an element is processed, it goes into a set of size at least double, 
hence each element is processed at most logn times
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Partition-Based Implementation

A partition-based version of Kruskalʼs Algorithm performs cloud merges as 
unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ¬ Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time: O(m log n)
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Kruskal Example
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Prim-Jarnik’s Algorithm

Idea:
• Builds one tree
• Pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting 

from s
• Store with each vertex v a label  d(v) = the smallest weight of an edge connecting 

v to a vertex in the cloud 

At each step:
• Add to the cloud the vertex u outside 

the cloud with the smallest label
• Update the labels of the vertices 

adjacent to u



Prim-Jarnik’s Algorithm (continued)

A priority queue stores the vertices 
outside the cloud
• Key: distance
• Element: vertex

Locator-based methods
• insert(k,e) returns a locator 
• replaceKey(l,k) changes the key of an 

item

We store three labels with each 
vertex:
• Distance
• Parent edge in MST
• Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ¬ new heap-based priority queue
s ¬ a vertex of G
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

setParent(v, Æ)
l ¬ Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ¬ Q.removeMin()
for all e Î G.incidentEdges(u)

z ¬ G.opposite(u,e)
r ¬ weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Running time: O(m log n)



Example
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Example (continued)
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There’s a long list of cities that Santa Claus needs to visit, and he only has 
from now until Christmas to figure out a good route to take. Use 
techniques you have learned in this course to give an efficient algorithm 
that will find a guaranteed short route starting from the North Pole that 
will visit every city and come back to the North Pole again. You don’t need 
to find the (optimal) shortest route, but you can guarantee that you will 
always come close to the shortest route. This is known as an approximation 
algorithm. For example, a 10-approximation algorithm would produce a 
route whose length is no more than 10 times the length of the shortest 
route.

1. How does your algorithm work?
2. What is the running time of your algorithm?
3. How closely does your algorithm approximate the optimal route?


