Elementary Graph Algorithms

CLRS 20 (+ many supplemental material)

Graph

- A graph is a pair (V, E) where
 - V is a set of vertices
 - **E** is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
 - Edges can be directed (an ordered pair) or undirected (unordered)

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Applications & uses

- Electronic circuits
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases (Entity-relationship diagram)
- Other
 - Spread (of disease, of disinformation)
 - Facility location
 - Finding influential nodes (social network, terrorist network)
 - Routing traffic (cell phone towers, internal traffic, car traffic)

Real-world networks

Utility Patent network 1972-1999 (3 Million patents)

Internet (AS-level)

nodes *n* = 23,752 autonomous systems

edges m = 58,416 AS links

Real-world networks

Real-world networks 🐋

Ex: undirected graph G with 5 vertices & 7 edges

Adjacency list representation

Space: O(n + m)Good for **sparse** graphs, i.e., m = O(n)

Adjacency matrix representation

Space: $O(n^2)$ Good for **dense** graphs, i.e., $m = O(n^2)$

Ex: Consider the following adjacency list representation

Adjacency list representation

1. Draw the corresponding graph.

2. Write the adjacency matrix representation

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	1	0	0	0
3	0	1	0	0	0	1
4	1	0	0	0	1	0
5	0	0	1	1	0	1
6	0	0	0	0	0	0

Graph isomorphism

A graph G_1 is **isomorphic** to graph G_2 if there is an edge-preserving vertex matching.

• Graphs are the same, but may be drawn differently or labeled differently

99

Jessica

Breadth-first search (BFS)

- Breadth-first search (BFS) is a general technique for traversing a graph.
 - visits all vertices and edges
 - on a graph with n vertices and m edges takes O(n + m) time
 - Produces a breadth-first tree consisting of vertices reachable from the starting point
- BFS can be further extended to solve other graph problems
 - determine whether G is connected
 - compute the connected components of G
 - compute a spanning forest of G
 - find and report a path with the minimum number of edges between two given vertices
 - find a simple cycle, if there is one

Breadth-first search (BFS)

BFS(G, s)

for each vertex $u \in G.V - \{s\}$ 1 2 u.color = WHITE $u.d = \infty$ 3 4 $u.\pi = \text{NIL}$ 5 s.color = GRAY $6 \quad s.d = 0$ 7 $s.\pi = \text{NIL}$ 8 $Q = \emptyset$ ENQUEUE(Q, s)9 while $Q \neq \emptyset$ 10 11 u = DEQUEUE(Q)for each vertex v in G.Adj[u] // search the neighbors of u 12 **if** *v*.*color* == WHITE // is v being discovered now? 13 v.color = GRAY14 v.d = u.d + 115 16 $v.\pi = u$ ENQUEUE(Q, v) // v is now on the frontier 17 // *u* is now behind the frontier 18 u.color = BLACK

Queue: A

distance d

Queue: A, B, C, D, F

distance d

distance d

Depth-first search (DFS)

- Depth-first search (DFS) is a general technique for traversing a graph.
 - visits all vertices and edges
 - on a graph with n vertices and m edges takes O(n + m) time
 - Produces a depth-first tree consisting of vertices reachable from the starting point
- DFS can be further extended to solve other graph problems
 - determine whether G is connected
 - compute the connected components of G
 - compute a spanning forest of G
 - find and report a path between two given vertices
 - find a simple cycle, if there is one

Depth-first search (DFS)

DFS(G)

for each vertex $u \in G.V$ u.color = WHITE $u.\pi = NIL$ time = 0**for** each vertex $u \in G.V$ **if** u.color == WHITE7 DFS-VISIT(G, u)

DFS-VISIT(G, u)

```
1 time = time + 1
                                 // white vertex u has just been discovered
2 u.d = time
3 u.color = GRAY
4 for each vertex v in G.Adj[u] // explore each edge (u, v)
        if v.color == WHITE
5
6
            v.\pi = u
            DFS-VISIT(G, v)
7
8 time = time + 1
   u.f = time
9
   u.color = BLACK
                                 // blacken u; it is finished
10
```


time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

time in / time out u \rightarrow v indicates that $v. \pi = u$

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Original Graph:

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Graph after BFS traversal:

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Original Graph:

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Graph after DFS traversal:

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Classification of edges

The traversals can classify each edge (u,v). Consider the resulting graph drawn like a tree rooted at the starting vertex.

- **Tree edge**: the dark black edges (\rightarrow) used to discovery a new vertex v from u (that is, $v \cdot \pi = u$)
- Back edge: v is an ancestor of u
- Forward edge: v is at a descendent level of u
- Cross edge: v is neither an ancestor nor descendent of u in the BFS/DFS tree

Topological Sort

A **topological sort** of a directed acyclic graph (DAG) is a linear ordering of all its vertices such that if G contains an edge (u,v), then u appears before v in the ordering.

Approach: use DFS; as a vertex is finished (time 'out' marked), put it in the front of the list

Ex: DAG of dependencies for putting on goalie equipment for ice hockey

One topological order:

Socks, Shorts, Hose, Pants, Skates, Leg pads, Tshirt, Chest pad, Sweater, Mask, batting glove, catch glove, blocker

Other: islands

Given a binary matrix where 0 represents water and 1 represents land, and connected ones form an island, count the total islands.

For example, consider the left 10x10 image, where blue is water and land is grey. There are a total of five islands present. They are marked by the numbers 1-5 in the right image.

1		2				3	3	3	3
		2		2		3			
2	2	2	2			3			
2			2		3				
2	2	2	2				5	5	5
	2		2			5	5	5	5
					5	5	5		
			4			5	5	5	
4		4		4			5		
4	4	4	4				5	5	5

Other: positivity

Given an M by N matrix of integers where each cell can contain a negative, zero, or a positive value, determine the minimum number of passes required to convert all negative values in the matrix positive.

Only a non-zero positive value at cell (i, j) can convert a negative value to present at its adjacent cells (i-1, j), (i+1, j), (i, j-1), and (i, j+1), i.e., up, down, left and right.

For example, the following matrix needs 3 passes, as demonstrated:

-1	-9		-1	
-8	-3	-2	9	-7
2			-6	
	-7	-3	5	-4

-1	-9		1	
8	-3	2	9	7
2			6	
	-7	3	5	4

After end of Pass 1

After end of Pass 2

1	9		1	
8	3	2	9	7
2			6	
	7	3	5	4

After end of Pass 3

Other: knight problem

Given a chessboard, find the shortest distance (minimum number of steps) taken by a knight to reach a given destination from a given source.

For example, given as input an 8x8 board, a source (7,0), and destination (0,7), the output would produce the minimum steps required is 6 (as illustrated by the following figure.

