
Elementary Graph
Algorithms

CLRS 20
(+ many supplemental material)

Graph
• A graph is a pair (V, E) where
• V is a set of vertices
• E is a collection of pairs of vertices, called edges
• Vertices and edges are positions and store elements
• Edges can be directed (an ordered pair) or undirected (unordered)

Example:
• A vertex represents an airport and stores the three-letter airport code
• An edge represents a flight route between two airports and stores the mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

13871743

1843

1099
1120

1233

337

2555

142

Applications & uses
• Electronic circuits

• Transportation networks
• Highway network
• Flight network

• Computer networks
• Local area network
• Internet
• Web

• Databases (Entity-relationship diagram)

• Other
• Spread (of disease, of disinformation)
• Facility location
• Finding influential nodes (social network, terrorist network)
• Routing traffic (cell phone towers, internal traffic, car traffic)

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Real-world networks

Sub-Category Graph
No Threshold

NYS Electric
Power Grid

Utility Patent network
1972-1999

(3 Million patents)

Real-world networks
Internet (AS-level)

nodes n = 23,752
autonomous systems

edges m = 58,416 AS links

Real-world networks

Real-world networks

Real-world networks

Protein interaction
network

Ex: undirected graph G with 5 vertices & 7 edges

Adjacency list representation Adjacency matrix representation

Space: 𝑂 𝑛 +𝑚
Good for sparse graphs, i.e., 𝑚 = 𝑂(𝑛)

Space: 𝑂 𝑛!
Good for dense graphs, i.e., 𝑚 = 𝑂(𝑛!)

Ex: Consider the following adjacency list representation

Adjacency list representation 1. Draw the corresponding graph.

2. Write the adjacency matrix representation

1
2

3

4
5

6

1 2 3 4 5 6

1 0 1 0 1 0 0

2 0 0 1 0 0 0

3 0 1 0 0 0 1

4 1 0 0 0 1 0

5 0 0 1 1 0 1

6 0 0 0 0 0 0

Graph isomorphism
A graph 𝐺" is isomorphic to graph 𝐺! if there is an edge-preserving vertex matching.
• Graphs are the same, but may be drawn differently or labeled differently

257

67

99

145

306

122 257

67

99

145
306

122

Same graph
(different drawings)

257

67

99

145

306

122 Albert

Christos

Jessica

Sharat

Sonya

Grant

Same graph
(different labels)

Breadth-first search (BFS)
• Breadth-first search (BFS) is a general technique for traversing a graph.
• visits all vertices and edges
• on a graph with n vertices and m edges takes O(n + m) time
• Produces a breadth-first tree consisting of vertices reachable from the starting point

• BFS can be further extended to solve other graph problems
• determine whether G is connected
• compute the connected components of G
• compute a spanning forest of G
• find and report a path with the minimum number of edges between two given vertices
• find a simple cycle, if there is one

Breadth-first search (BFS)

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A

0

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F|

0

1 1

1 1

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E| |

0

1 1

1 1

2 2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E| | |

0

1 1

1 1

2 2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E, H| | | |

0

1 1

1 1

2 2
2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E, H| | | | |

0

1 1

1 1

2 2
2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E, H| | | | | |

0

1 1

1 1

2 2
2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E, H| | | | | | |

0

1 1

1 1

2 2
2

distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: BFS on a graph

A

B

C

D

E

F

GH

Queue: A, B, C, D, F, G, E, H| | | | | | |

0

1 1

1 1

2 2
2

|
distance d
u à v indicates that 𝑣. 𝜋 = 𝑢

Depth-first search (DFS)
• Depth-first search (DFS) is a general technique for traversing a graph.
• visits all vertices and edges
• on a graph with n vertices and m edges takes O(n + m) time
• Produces a depth-first tree consisting of vertices reachable from the starting point

• DFS can be further extended to solve other graph problems
• determine whether G is connected
• compute the connected components of G
• compute a spanning forest of G
• find and report a path between two given vertices
• find a simple cycle, if there is one

Depth-first search (DFS)

Ex: DFS on a graph

A

B

C

D

E

F

GH

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 /

6 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 /

6 /

7 /

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 /

6 /

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 /

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 /

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 / 12

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 /

4 / 13 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 / 12

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 /

3 / 14

4 / 13 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 / 12

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 /

2 / 15

3 / 14

4 / 13 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 / 12

Ex: DFS on a graph

A

B

C

D

E

F

GH

When given a choice, for consistency we will
pick vertices which occur earliest alphabetically

1 / 16

2 / 15

3 / 14

4 / 13 5 / 10

6 / 9

7 / 8

time in / time out
u à v indicates that 𝑣. 𝜋 = 𝑢

11 / 12

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Original Graph:

A

B

C

D

E

F

GH

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Graph after BFS traversal:

A

B

C

D

E

F

GH

0

1 1

1 1

2 2
2

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

BFS tree:

A

B

C

D

E

F

GH

0

1 1

1 1

2 2
2

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Original Graph:

A

B

C

D

E

F

GH

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Graph after DFS traversal:

A

B

C

D

E

F

GH 1 / 16

2 / 15

3 / 14

4 / 13 5 / 10

6 / 9

7 / 8

11 / 12

BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

DFS tree:

A

B

C

D

E

F

GH 1 / 16

2 / 15

3 / 14

4 / 13 5 / 10

6 / 9

7 / 8

11 / 12

Classification of edges
The traversals can classify each edge (u,v). Consider the resulting graph drawn
like a tree rooted at the starting vertex.

• Tree edge: the dark black edges (à) used to discovery a new vertex v from u
(that is, 𝑣. 𝜋 = 𝑢)
• Back edge: v is an ancestor of u
• Forward edge: v is at a descendent level of u
• Cross edge: v is neither an ancestor nor descendent of u in the BFS/DFS tree

Topological Sort
A topological sort of a directed acyclic graph (DAG) is a linear ordering of all its vertices such
that if G contains an edge (u,v), then u appears before v in the ordering.

Approach: use DFS; as a vertex is finished (time ‘out’ marked), put it in the front of the list

Ex: DAG of dependencies for putting on goalie equipment for ice hockey

One topological order:

Socks, Shorts, Hose, Pants, Skates, Leg pads, T-
shirt, Chest pad, Sweater, Mask, batting glove,
catch glove, blocker

Other: islands
Given a binary matrix where 0 represents water and 1 represents land, and
connected ones form an island, count the total islands.
For example, consider the left 10x10 image, where blue is water and land is grey.
There are a total of five islands present. They are marked by the numbers 1-5 in the
right image.

Other: positivity
Given an M by N matrix of integers where each cell can contain a negative, zero, or
a positive value, determine the minimum number of passes required to convert all
negative values in the matrix positive.
Only a non-zero positive value at cell (i,j)can convert a negative value to
present at its adjacent cells (i-1,j), (i+1,j), (i, j-1), and (i, j+1),
i.e., up, down, left and right.
For example, the following matrix needs 3 passes, as demonstrated:

Other: knight problem
Given a chessboard, find the shortest distance (minimum number of steps) taken
by a knight to reach a given destination from a given source.

For example, given as input an 8x8 board, a source (7,0), and destination (0,7), the
output would produce the minimum steps required is 6 (as illustrated by the
following figure.

