Elementary Graph
Algorithms

CLRS 20

(+ many supplemental material)

Graph

* A graph is a pair (V, E) where
* Vis a set of vertices
* Eis a collection of pairs of vertices, called edges
* Vertices and edges are positions and store elements
* Edges can be directed (an ordered pair) or undirected (unordered)

Example:
* A vertex represents an airport and stores the three-letter airport code
* An edge represents a flight route between two airports and stores the mileage of the route

Applications & uses

* Electronic circuits

* Transportation networks
* Highway network
* Flight network

 Computer networks
* Local area network
* Internet
* Web

» Databases (Entity-relationship diagram)

e Other
» Spread (of disease, of disinformation)
* Facility location
* Finding influential nodes (social network, terrorist network)
* Routing traffic (cell phone towers, internal traffic, car traffic)

world networks

Real-

Utility Patent network

1972-1999
(3 Million patents)

NYS Electric

v

Power Grid

Real-world networks

Internet (AS-level)

acBozoH pUE BSOR
L
v,
&)

B nodes n = 23,752
()
Sy autonomous systems

edges m = 58,416 AS links

Real-world networks

1) /] ‘—P})
IS

pure

by \
=l
; \“‘\

—

Py f‘(
=\

) W
B

1

= i * S—= i

e NS UIe o
2] e S i ~ @ /‘ -

: .\ e = ‘ Crorre Jf ~’-‘m =
X3 —_—- > /f b . \ii ‘_M
[N \“’://4/5% T, q'.//J!//‘l\‘ ’\‘q

NI e KN
" 'M @ @ '\
[/

"> Gsivvia) /Z
(raesies

AN
S
ﬁ/ »‘r

Real-world networks

feature?2

[}/
c" T 2 oA
. " @ titalgrosig 52015
. - - -
L3 NS P - -
R ; e .
D * L gbabei-runtime g ® s
. » abei-runtime g ..
e . . e *
. @ \ 7 ;’E-ua .
. e ; ‘
. !
B e . .
> 8 . »
. ° e * " f t 1
: =% 4 eature
@ . 0
¥k \
.
«* o P~ e %
o @
: .
. 5 N
4 . * e
. . X
; S & Y
L L X ..
o o & -.
" . 4
. o / :
> . 3 : @ ronuest L
3 o - — Y . .
» . «® - PY . Y .(.mul : $ N . * ® ‘: .:
€ ° L 2 e ..yaorﬁamgenerafgr pre; .
.o ® . /
. » . b/
W 3 = £ ' o = A
\ .
” o L] - =2y o . ".' e .
o T o L . + P .
=% . * gL ®e . L . .
. - ® 3 f
. M .o ° A\ b 3
. " g Woncwss g i g s RV L\ >
.
. « 2 . o % "4 «® .. >N » & : ., &
. ® e ® /\ o y Y V23 . :
. . ¢ @ v > L ® . o \ o
. Y ® . . 3 4 . S °
- ~ i ® [] o0 9 0 . . i
*—o._o9 L . L] toa , 4 » . . »
o . e v . . A N A
2o Ll S ce . - . . o ° K)
L 3 . T Py P . ", «\% & Z o s
oy . @t LIS . . ¥ S s 8- .
7 ¢ 3 . .
& . e’ g . % N . . o . o 3 .,
. L] d . - . .® . -
b *s N af e | "Ke | @ %
Y o° L " * P ps
. \ b . - readable-stream a ©
ot o o’ . . [%
LA g o J & - . - - & ‘®
4 . \ 3 A
N - ¥ v LN A aR) P .
L e ‘e /‘F"'”’-“’ L] s @ vt . o e ® o
. . v . 4 = =
= { S ° & <
. v oy ¥\ 7 .. 3 .
¢ [¥ - z RN ® Brce
) PP " Tl @icherivs . o oo
o /! d .® browserif§
o o227, . @ . .
v ' & 4 4 Z vy R
. - - & . -
i . Y p v . i v o @eiorower
bl] él .. 4 . 2) .. » . . .
4 . 6" . . » . 3 e .
* . o s .
. . pe
e . . L] .
. b . L .
“ o« ? P é - -

develop

master

issue3

Real-world networks . \.

Protein interaction
network

7
& ’?g’ \
W

% S0 N\ "\‘f’ 4
A \bﬁ"?}s \‘\':}\\ iy 1 A7

&\
R 4

\‘- Y T ON Wt n’-”:"}
\\}\\%(‘\il\\l\' 5

b o ’? % § . Q.
xv§\‘\\‘.\§~“) R
" C N q\{“c \\ ' > .._.

\.“\\ W'l e
/

IR

- — »
e NS S
5

e O P

: A

/, - » N A b
' 9L b ol o -\\3;
‘ & 4. 4 > . Oh (

¥ I SS \
‘ 7, - o i -,s:’.;. ‘..?:. '- p ». \\ﬂ.
R i/ ”, ul Ny v
; 'y . ".'l o3 CORS

Ny

G
e
\ X

Ex: undirected graph G with 5 vertices & 7 edges

1 2\
/3
5 4
Adjacency list representation Adjacency matrix representation
1 2 3 4 5
g i T B g 2 P4 1o 1 0 0 1
57; ’j/'?, 4z 20101 1 1
-] 3/0 1 0 1 0
4 > 2 > 5 > 3|/
410 1 1 0 1
5 > 4 >] > 2|/
5/i1. 1 0 1 O
Space: O(n + m) Space: 0(n?)

Good for sparse graphs, i.e., m = 0(n) Good for dense graphs, i.e., m = 0(n?)

Ex: Consider the following adjacency list representation

Adjacency list representation 1. Draw the corresponding graph.
1 » 2 > 4

2 L > 3

3 L > 2 |—> 6

4 —» 1 —» 5

5 » 3 > 4 > 6

6

2. Write the adjacency matrix representation

1 2 3 4 5 6
101|021 |0{O
2100|1000
3101100101
4 (1(0(0(0 (110
510101101
6101000 |00

Graph isomorphism

A graph G, is isomorphic to graph G, if there is an edge-preserving vertex matching.
* Graphs are the same, but may be drawn differently or labeled differently

/
257 1&° 145 22
Same graph
(different drawings) 7 =) 99
306 67
145
99 67" 306

Grant

122
257 145 Albe Sharat
Same graph
(different labels) 7 “
306 67 Christos
Sonya
99

Jessica

Breadth-first search (BFS)

» Breadth-first search (BFS) is a general technique for traversing a graph.
* visits all vertices and edges
* on a graph with n vertices and m edges takes O(n + m) time
* Produces a breadth-first tree consisting of vertices reachable from the starting point

* BFS can be further extended to solve other graph problems
* determine whether G is connected
e compute the connected components of G
e compute a spanning forest of G
 find and report a path with the minimum number of edges between two given vertices
 find a simple cycle, if there is one

Breadth-first search (BFS)
BFS(G, s)

1 for each vertex u € G.V — {s}
2 u.color = WHITE
3 u.d = oo

4 u.m = NIL
5 s.color = GRAY
6 s.d=20

7 §.m = NIL

8 Q0 =10

9 ENQUEUE(Q,s)

10 while Q # 0

11 u = DEQUEUE(Q)

12 for each vertex v in G.Adjlu] // search the neighbors of u

13 if v.color == WHITE // is v being discovered now?
14 v.color = GRAY

15 v.d = u.d+1

16 V. = U

17 ENQUEUE(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

Ex: BFS on a graph

Queue: A

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C,D,F, G, E

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C,D,F, G, E

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F, G, E, H

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F, G E, H

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F, G, E, H

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F, G, E, H

distance d
u = vindicatesthatv.m = u

Ex: BFS on a graph

Queue: A, B,C, D, F, G, E, H

distance d
u = vindicatesthatv.m = u

Depth-first search (DFS)

* Depth-first search (DFS) is a general technique for traversing a graph.
* visits all vertices and edges
* on a graph with n vertices and m edges takes O(n + m) time
* Produces a depth-first tree consisting of vertices reachable from the starting point

* DFS can be further extended to solve other graph problems
* determine whether G is connected
e compute the connected components of G
e compute a spanning forest of G
 find and report a path between two given vertices
 find a simple cycle, if there is one

Depth-first search (DFS)

DFS(G)

1 foreachvertexu € G.V

2 u.color = WHITE

3 u.m = NIL

4 time = 0

5 for each vertexu € G.V

6 if u.color == WHITE

7 DFS-VIsIT(G, u)

DFS-VISIT(G, u)

1 time = time + 1 // white vertex u has just been discovered
2 u.d = time

3 u.color = GRAY

4 for each vertex v in G.Adj[u] // explore each edge (u, v)

5 if v.color == WHITE

6 VLT = U

7 DFS-VIsSIT(G, v)

8 time = time + 1

9 u.f = time

10 u.color = BLACK // blacken u; it is finished

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

6/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

6/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

6/

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

6/9

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/

6/9

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/

6/9

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/

6/9

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/13

6/9

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/13

6/9 3/14

7/ 8 2/

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/13

6/9 3/14

7/8 2/15

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

Ex: DFS on a graph

5/ 10 4/13

6/9 3/14

7/8 2/15

time in / time out When given a choice, for consistency we will
u -2 vindicates that v.m = u pick vertices which occur earliest alphabetically

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Original Graph:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Graph after BFS traversal:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

BFS tree:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Original Graph:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

Graph after DFS traversal:
5/ 10 4 /13

6/9 3/14

7/ 8 2 /15

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree
which spans each connected component of the original graph.

DFS tree:
5/ 10 4/13

6/9 1/16 11/12 3/14

778 2/15

Classification of edges

The traversals can classify each edge (u,v). Consider the resulting graph drawn
like a tree rooted at the starting vertex.

\ Tree edge
\, Back edge
\, Forward edg

\, Cross edge

* Tree edge: the dark black edges (=) used to discovery a new vertex v from u
(thatis, v.m = u)

* Back edge: v is an ancestor of u
* Forward edge: v is at a descendent level of u

* Cross edge: v is neither an ancestor nor descendent of u in the BFS/DFS tree

Topological Sort

A topological sort of a directed acyclic graph (DAG) is a linear ordering of all its vertices such
that if G contains an edge (u,v), then u appears before v in the ordering.

Approach: use DFS; as a vertex is finished (time ‘out’ marked), put it in the front of the list

Ex: DAG of dependencies for putting on goalie equipment for ice hockey

25/26 1/6

15724

socks

16/23

batting glove

8/13

chest pad

17/22 One topological order:

skates

sweater

18/21 Socks, Shorts, Hose, Pants, Skates, Leg pads, T-

shirt, Chest pad, Sweater, Mask, batting glove,
catch glove, blocker

1920 (leg pads

catch glove
2/5

3/4 (blocker

Other: islands

Given a binary matrix where 0 represents water and 1 represents land, and
connected ones form an island, count the total islands.

For example, consider the left 10x10 image, where blue is water and land is grey.
There are a total of five islands present. They are marked by the numbers 1-5 in the
right image.

1 2 31333
2 2 3
2 (2| 2|2 3
2 2 3
2 (2|2 |2 5|15]|5
2 2 5|15 (5|5
5155
4 5155
-+ 4 -+ 5
4 |1 44| 4 5| 5] 5

Other: positivity

Given an M by N matrix of integers where each cell can contain a negative, zero, or

a positive value, determine the minimum number of passes required to convert all
negative values in the matrix positive.

Only a non-zero positive value at cell (1, J)can convert a negative value to
present at its adjacentcells (1-1,3), (i+1,3), (1, j-1),and (i, j+1),
i.e., up, down, left and right.

For example, the following matrix needs 3 passes, as demonstrated:

After end of Pass 1 After end of Pass 2 After end of Pass 3

Other: knight problem

Given a chessboard, find the shortest distance (minimum number of steps) taken
by a knight to reach a given destination from a given source.

For example, given as input an 8x8 board, a source (7,0), and destination (0,7), the
output would produce the minimum steps required is 6 (as illustrated by the
following figure.

