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Graph
• A graph is a pair (V, E) where
• V is a set of vertices
• E is a collection of pairs of vertices, called edges
• Vertices and edges are positions and store elements
• Edges can be directed (an ordered pair) or undirected (unordered)

Example:
• A vertex represents an airport and stores the three-letter airport code
• An edge represents a flight route between two airports and stores the mileage of the route
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Applications & uses
• Electronic circuits

• Transportation networks
• Highway network
• Flight network

• Computer networks
• Local area network
• Internet
• Web

• Databases (Entity-relationship diagram)

• Other
• Spread (of disease, of disinformation)
• Facility location
• Finding influential nodes (social network, terrorist network)
• Routing traffic (cell phone towers, internal traffic, car traffic)
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Real-world networks

Sub-Category Graph
No Threshold 

NYS Electric 
Power Grid

Utility Patent network
1972-1999

(3 Million patents)



Real-world networks
Internet (AS-level)

nodes n = 23,752
autonomous systems

edges m = 58,416 AS links
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Real-world networks

Protein interaction 
network



Ex: undirected graph G with 5 vertices & 7 edges

Adjacency list representation Adjacency matrix representation

Space: 𝑂 𝑛 +𝑚
Good for sparse graphs, i.e., 𝑚 = 𝑂(𝑛)

Space: 𝑂 𝑛!
Good for dense graphs, i.e., 𝑚 = 𝑂(𝑛!)



Ex: Consider the following adjacency list representation

Adjacency list representation 1. Draw the corresponding graph.

2. Write the adjacency matrix representation
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1 2 3 4 5 6

1 0 1 0 1 0 0

2 0 0 1 0 0 0

3 0 1 0 0 0 1

4 1 0 0 0 1 0

5 0 0 1 1 0 1

6 0 0 0 0 0 0



Graph isomorphism
A graph 𝐺" is isomorphic to graph 𝐺! if there is an edge-preserving vertex matching.
• Graphs are the same, but may be drawn differently or labeled differently
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Breadth-first search (BFS)
• Breadth-first search (BFS) is a general technique for traversing a graph.
• visits all vertices and edges
• on a graph with n vertices and m edges takes O(n + m) time
• Produces a breadth-first tree consisting of vertices reachable from the starting point

• BFS can be further extended to solve other graph problems
• determine whether G is connected
• compute the connected components of G
• compute a spanning forest of G
• find and report a path with the minimum number of edges between two given vertices 
• find a simple cycle, if there is one



Breadth-first search (BFS)



Ex: BFS on a graph
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Depth-first search (DFS)
• Depth-first search (DFS) is a general technique for traversing a graph.
• visits all vertices and edges
• on a graph with n vertices and m edges takes O(n + m) time
• Produces a depth-first tree consisting of vertices reachable from the starting point

• DFS can be further extended to solve other graph problems
• determine whether G is connected
• compute the connected components of G
• compute a spanning forest of G
• find and report a path between two given vertices 
• find a simple cycle, if there is one



Depth-first search (DFS)



Ex: DFS on a graph
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u à v indicates that 𝑣. 𝜋 = 𝑢

When given a choice, for consistency we will 
pick vertices which occur earliest alphabetically
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Ex: DFS on a graph
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Ex: DFS on a graph
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Ex: DFS on a graph
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Ex: DFS on a graph
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BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree 
which spans each connected component of the original graph.

Original Graph:
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BFS / DFS Forest
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BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree 
which spans each connected component of the original graph.
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BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree 
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BFS / DFS Forest
Consider only those edges used to discovery a new vertex. We obtain a tree 
which spans each connected component of the original graph.

DFS tree:
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Classification of edges
The traversals can classify each edge (u,v). Consider the resulting graph drawn 
like a tree rooted at the starting vertex.

• Tree edge: the dark black edges (à) used to discovery a new vertex v from u 
(that is, 𝑣. 𝜋 = 𝑢)
• Back edge: v is an ancestor of u
• Forward edge: v is at a descendent level of u
• Cross edge: v is neither an ancestor nor descendent of u in the BFS/DFS tree



Topological Sort
A topological sort of a directed acyclic graph (DAG) is a linear ordering of all its vertices such 
that if G contains an edge (u,v), then u appears before v in the ordering.

Approach: use DFS; as a vertex is finished (time ‘out’ marked), put it in the front of the list

Ex: DAG of dependencies for putting on goalie equipment for ice hockey

One topological order:

Socks, Shorts, Hose, Pants, Skates, Leg pads, T-
shirt, Chest pad, Sweater, Mask, batting glove, 
catch glove, blocker



Other: islands
Given a binary matrix where 0 represents water and 1 represents land, and 
connected ones form an island, count the total islands.
For example, consider the left 10x10 image, where blue is water and land is grey. 
There are a total of five islands present. They are marked by the numbers 1-5 in the 
right image.



Other: positivity
Given an M by N matrix of integers where each cell can contain a negative, zero, or 
a positive value, determine the minimum number of passes required to convert all 
negative values in the matrix positive.
Only a non-zero positive value at cell (i,j)can convert a negative value to 
present at its adjacent cells (i-1,j),  (i+1,j),  (i, j-1), and (i, j+1), 
i.e., up, down, left and right.
For example, the following matrix needs 3 passes, as demonstrated:



Other: knight problem
Given a chessboard, find the shortest distance (minimum number of steps) taken 
by a knight to reach a given destination from a given source.

For example, given as input an 8x8 board, a source (7,0), and destination (0,7), the 
output would produce the minimum steps required is 6 (as illustrated by the 
following figure.


