Elementary Graph Algorithms

CLRS 20
(+ many supplemental material)

Graph

- A graph is a pair (V, E) where
- \boldsymbol{V} is a set of vertices
- \boldsymbol{E} is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Edges can be directed (an ordered pair) or undirected (unordered)

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Applications \& uses

- Electronic circuits
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases (Entity-relationship diagram)
- Other
- Spread (of disease, of disinformation)
- Facility location
- Finding influential nodes (social network, terrorist network)
- Routing traffic (cell phone towers, internal traffic, car traffic)

Real-world networks

Utility Patent network
 1972-1999
 (3 Million patents)

Real-world networks

Real-world networks

Real-world networks

Real-world networks

Ex: undirected graph G with 5 vertices \& 7 edges

Adjacency list representation

Space: $O(n+m)$
Good for sparse graphs, i.e., $m=O(n)$

Adjacency matrix representation

	1	2	3	4	5
	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Space: $O\left(n^{2}\right)$
Good for dense graphs, i.e., $m=O\left(n^{2}\right)$

Ex: Consider the following adjacency list representation

Adjacency list representation

1. Draw the corresponding graph.

2. Write the adjacency matrix representation

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	1	0	0	0
3	0	1	0	0	0	1
4	1	0	0	0	1	0
5	0	0	1	1	0	1
6	0	0	0	0	0	0

Graph isomorphism

A graph G_{1} is isomorphic to graph G_{2} if there is an edge-preserving vertex matching.

- Graphs are the same, but may be drawn differently or labeled differently

Same graph (different drawings)

Same graph (different labels)

Breadth-first search (BFS)

- Breadth-first search (BFS) is a general technique for traversing a graph.
- visits all vertices and edges
- on a graph with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Produces a breadth-first tree consisting of vertices reachable from the starting point
- BFS can be further extended to solve other graph problems
- determine whether G is connected
- compute the connected components of G
- compute a spanning forest of G
- find and report a path with the minimum number of edges between two given vertices
- find a simple cycle, if there is one

Breadth-first search (BFS)

$\operatorname{BFS}(G, s)$

```
for each vertex \(u \in G . V-\{s\}\)
    u.color \(=\) WHITE
    \(u . d=\infty\)
    \(u . \pi=\) NIL
s.color \(=\) GRAY
\(s . d=0\)
\(s . \pi=\) NIL
\(Q=\emptyset\)
\(\operatorname{EnQUEUE}(Q, s)\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{DEQUEUE}(Q)\)
    for each vertex \(v\) in \(G . A d j[u] \quad / /\) search the neighbors of \(u\)
        if \(v\).color \(==\) WHITE \(\quad / /\) is \(v\) being discovered now?
            \(v\). color \(=\) GRAY
            \(v . d=u . d+1\)
            \(v . \pi=u\)
            \(\operatorname{ENQUEUE}(Q, v) \quad / / v\) is now on the frontier
    u.color \(=\) BLACK
                                // \(u\) is now behind the frontier
```


Ex: BFS on a graph

Queue: A
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

Ex: BFS on a graph

Queue: A, B, C, D, F
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

Ex: BFS on a graph

Queue: A, B, C, D, F, G, E
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

Ex: BFS on a graph

Queue: $A, B, \nmid, \quad D, F, G, E$
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

Ex: BFS on a graph

Queue: A, $\mathcal{B}, \mathcal{C}, \mid$ D, F, G, E, H
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

Ex: BFS on a graph

Queue: $A, \vec{\prime}, 申, \downarrow, \phi, \vDash, G, E, H$
distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

Ex: BFS on a graph

distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

Ex: BFS on a graph

distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

Ex: BFS on a graph

distance d
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

Depth-first search (DFS)

- Depth-first search (DFS) is a general technique for traversing a graph.
- visits all vertices and edges
- on a graph with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Produces a depth-first tree consisting of vertices reachable from the starting point
- DFS can be further extended to solve other graph problems
- determine whether G is connected
- compute the connected components of G
- compute a spanning forest of G
- find and report a path between two given vertices
- find a simple cycle, if there is one

Depth-first search (DFS)

DFS(G)

7

```
5 for each vertex \(u \in G . V\)
6 if \(u\).color \(==\) WHITE
for each vertex \(u \in G . V\)
    u.color \(=\) WHITE
    \(u . \pi=\) NIL
    time \(=0\)
    if \(u\). color \(==\) WHITE
        \(\operatorname{DFS}-\operatorname{Visit}(G, u)\)
```

$\operatorname{DFS}-\operatorname{Visit}(G, u)$
time $=$ time $+1 \quad / /$ white vertex u has just been discovered
$u . d=$ time
u.color $=$ GRAY
for each vertex v in $G . A d j[u] / /$ explore each edge (u, v)
if v. color $==$ WHITE
$v . \pi=u$
$\operatorname{DFS}-\operatorname{Visit}(G, v)$
time $=$ time +1
u. $f=$ time
u. color $=$ BLACK $\quad / /$ blacken u; it is finished

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v \cdot \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out
$\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

Ex: DFS on a graph

time in / time out $\mathrm{u} \rightarrow \mathrm{v}$ indicates that $v . \pi=u$

When given a choice, for consistency we will pick vertices which occur earliest alphabetically

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Original Graph:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Graph after BFS traversal:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

BFS tree:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Original Graph:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

Graph after DFS traversal:

BFS / DFS Forest

Consider only those edges used to discovery a new vertex. We obtain a tree which spans each connected component of the original graph.

DFS tree:

Classification of edges

The traversals can classify each edge (u, v). Consider the resulting graph drawn like a tree rooted at the starting vertex.

- Tree edge: the dark black edges (\rightarrow) used to discovery a new vertex v from u (that is, $v . \pi=u$)
- Back edge: v is an ancestor of u
- Forward edge: v is at a descendent level of u
- Cross edge: v is neither an ancestor nor descendent of u in the BFS/DFS tree

Topological Sort

A topological sort of a directed acyclic graph (DAG) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

Approach: use DFS; as a vertex is finished (time 'out' marked), put it in the front of the list

Ex: DAG of dependencies for putting on goalie equipment for ice hockey

One topological order:
Socks, Shorts, Hose, Pants, Skates, Leg pads, Tshirt, Chest pad, Sweater, Mask, batting glove, catch glove, blocker

Other: islands

Given a binary matrix where 0 represents water and 1 represents land, and connected ones form an island, count the total islands.
For example, consider the left 10×10 image, where blue is water and land is grey. There are a total of five islands present. They are marked by the numbers $1-5$ in the right image.

1		2				3	3	3	3
		2		2		3			
2	2	2	2			3			
2			2		3				
2	2	2	2				5	5	5
	2		2			5	5	5	5
					5	5	5		
			4			5	5	5	
4		4		4			5		
4	4	4	4				5	5	5

Other: positivity

Given an M by N matrix of integers where each cell can contain a negative, zero, or a positive value, determine the minimum number of passes required to convert all negative values in the matrix positive.
Only a non-zero positive value at cell (i, j) can convert a negative value to present at its adjacent cells ($\mathrm{i}-1, \mathrm{j}$), ($\mathrm{i}+1, \mathrm{j}$), ($\mathrm{i}, \mathrm{j}-1$), and ($\mathrm{i}, \mathrm{j}+1$), i.e., up, down, left and right.

For example, the following matrix needs 3 passes, as demonstrated:

-1	-9		-1	
-8	-3	-2	9	-7
2			-6	
	-7	-3	5	-4

Input Matrix

After end of Pass 1

After end of Pass 2

After end of Pass 3

Other: knight problem

Given a chessboard, find the shortest distance (minimum number of steps) taken by a knight to reach a given destination from a given source.

For example, given as input an 8×8 board, a source $(7,0)$, and destination (0,7), the output would produce the minimum steps required is 6 (as illustrated by the following figure.

