
Binary Search Trees
CLRS 12.1 – 12.3

(+ some supplemental material)



(Supplemental): What is Binary Search?
• ”Binary Search” vs. “Binary Search Tree (BST)”
• To understand a BST, let’s talk first about what a binary search is

Binary Search – occurs on an array of sorted items
• Find an element k
• After checking a key j in the sequence, we can tell if item with key k will come 

before or after it
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(Supplemental): What is Binary Search?
• ”Binary Search” vs. “Binary Search Tree (BST)”
• To understand a BST, let’s talk first about what a binary search is

Binary Search – occurs on an array of sorted items
• Find an element k
• After checking a key j in the sequence, we can tell if item with key k will come 

before or after it
• Which item should we compare against first?
• The middle!
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Ex. Binary Search: Find k = 52

Binary Search Trees 4

11 18 22 34 41 52 54 63 68 74
0       1       2      3       4       5      6       7      8       9

low high

S

mid ←  ⌊(low + high) / 2⌋
if key(mid) = k   then return elem(mid)
if key(mid) <  k  then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) >  k  then return BinarySearch(S, k, low, mid -1)

if low > high   then return NO_SUCH_KEY
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Each successive call to BinarySearch halves the input, so the running time is O(logn)

Binary Search

mid ←  ⌊(low + high) / 2⌋
if key(mid) = k   then return elem(mid)
if key(mid) <  k  then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) >  k  then return BinarySearch(S, k, low, mid -1)

if low > high   then return NO_SUCH_KEY



Now ... Binary Search Trees (BSTs)

They are trees! Not arrays.
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Binary Search Tree (BST)
• An implementation of an ordered dictionary
• We can search for an item based on its key
• Keys have some inherent order to them

• A binary search tree is a binary tree where each internal node stores a (key, 
element)-pair, and 
• each element in the left subtree is smaller than or equal to the root
• each element in the right subtree is larger than or equal to the root
• the left and right subtrees are binary search trees

• An inorder traversal visits items in ascending order
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Insert(T, k)
• Idea: find a free spot in the tree and add a node which stores that item k
• Strategy 
• start at root r
• if k < key(r), continue in left subtree
• otherwise, continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Insert the numbers 22, 80, 18, 9, 90, 20.
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BST – Tree-Search(T, k)
• Idea: find item k
• Strategy 
• start at root r
• if k = key(r), return r
• if k < key(r), continue in left subtree
• if k > key(r), continue in right subtree

• Runtime is O(h), where h is the height of the tree

• Ex: Find 20.
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BST – Tree-Delete(T, k)
• Idea: remove item k

• Strategy: let z be the position of Tree-Search(T, k). Remove z without creating 
“holes” in the tree

• Case 1: z has at most one child (easier: removing z creates easily filled hole)
• Replace z with subtree rooted at child

• Case 2: z has two children (harder: removing z creates holes)
• Let y be the next node that follows in an inorder traversal
• y is guaranteed to be a leaf node (it is the leftmost node in the right 

subtree of z)
• Swap z and y
• Remove z

• Runtime is O(h), where h is the height of the tree



BST – Tree-Delete(T, k)
Case 1(a): z has no children

Ex: Delete 84
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BST – Tree-Delete(T, k)
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BST – Tree-Delete(T, k)
Case 1(b): z has one child

Ex: Delete 25
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BST – Tree-Delete(T, k)
Case 1(b): z has one child

Ex: Delete 25
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BST – Tree-Delete(T, k)
Case 2: z has two children
Find the first internal node y that follows z in an inorder traversal
Swap z and y; Remove z

Ex: Delete 20
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BST – Tree-Delete(T, k)
Case 2: z has two children
Find the first internal node y that follows z in an inorder traversal
Swap z and y; Remove z
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Performance of BST operations
• Space used for BST is O(n)
• Runtime of all operations is O(h)

What is h in the worst case?
• Consider inserting the sequence 1, 2, …, n – 1, n
• Worst case height h ∈ O(n).

How do we keep the tree balanced?
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2

n



Other
• You are given two sorted integer arrays A and B such that no integer is contained 

twice in the same array. A and B are nearly identical. However, B is missing exactly 
one number. Find the missing number in B.

• You are given a sorted array A of distinct integers. Determine whether there exists 
an index i such that A[i] = i.


