Binary Search Trees

CLRS 12.1-12.3
(+ some supplemental material)

(Supplemental): What is Binary Search?

-"Binary Search" vs. "Binary Search Tree (BST)"

- To understand a BST, let's talk first about what a binary search is

Binary Search - occurs on an array of sorted items

- Find an element k
- After checking a key j in the sequence, we can tell if item with key k will come before or after it

(Supplemental): What is Binary Search?

-"Binary Search" vs. "Binary Search Tree (BST)"

- To understand a BST, let's talk first about what a binary search is

Binary Search - occurs on an array of sorted items

- Find an element k
- After checking a key j in the sequence, we can tell if item with key k will come before or after it
- Which item should we compare against first?
- The middle!

Ex. Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low > high then return NO_SUCH_KEY
mid \leftarrow [(low + high) / 2〕
if key (mid) $=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, k, mid +1 , high)
if $k e y$ (mid) $>k$ then return BinarySearch(S, k, low, mid -1$)$

Ex. Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low > high then return NO_SUCH_KEY
mid \leftarrow [(low + high) / 2〕
if key (mid) $=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, k, mid +1 , high)
if $k e y$ (mid) $>k$ then return BinarySearch(S, k, low, mid -1$)$

Ex. Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low > high then return NO_SUCH_KEY
mid \leftarrow [(low + high) / 2〕
if $k e y$ (mid) $=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, k, mid +1 , high)
if $k e y$ (mid) $>k$ then return BinarySearch(S, k, low, mid -1$)$

Ex. Binary Search: Find $k=52$

Algorithm BinarySearch(S, k, low, high):
if low > high then return NO_SUCH_KEY
mid \leftarrow [(low + high) / 2〕
if key (mid) $=k$ then return elem(mid)
if $k e y$ (mid) $<k$ then return BinarySearch(S, k, mid +1 , high)
if $k e y$ (mid) $>k$ then return BinarySearch(S, k, low, mid -1$)$

Binary Search

Algorithm BinarySearch(S, k, low, high):
if low > high then return NO_SUCH_KEY
mid \leftarrow [(low + high $) / 2\rfloor$
if $k e y$ (mid) $=k$ then return elem(mid)
if key (mid) $<k$ then return BinarySearch(S, k, mid +1 , high) if $k e y($ mid $)>k$ then return BinarySearch(S, k, low, mid -1$)$

Each successive call to BinarySearch halves the input, so the running time is $\mathbf{O}(\operatorname{logn})$

Now ... Binary Search Trees (BSTs)

They are trees! Not arrays.

Binary Search Tree (BST)

- An implementation of an ordered dictionary
- We can search for an item based on its key
- Keys have some inherent order to them
- A binary search tree is a binary tree where each internal node stores a (key, element)-pair, and
- each element in the left subtree is smaller than or equal to the root
- each element in the right subtree is larger than or equal to the root
- the left and right subtrees are binary search trees
- An inorder traversal visits items in ascending order

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

$$
22
$$

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Insert(T, k)

- Idea: find a free spot in the tree and add a node which stores that item k
- Strategy
- start at root r
- if $k<\operatorname{key}(r)$, continue in left subtree
- otherwise, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Insert the numbers 22, 80, 18, 9, 90, 20.

BST - Tree-Search(T, k)

- Idea: find item k
- Strategy
- start at root r
- if $k=\operatorname{key}(r)$, return r
- if $k<\operatorname{key}(r)$, continue in left subtree
- if $k>\operatorname{key}(r)$, continue in right subtree
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree
- Ex: Find 20.

BST - Tree-Delete(T, k)

-Idea: remove item k

- Strategy: let z be the position of Tree-Search(T, k). Remove z without creating "holes" in the tree
- Case 1: z has at most one child (easier: removing z creates easily filled hole)
- Replace z with subtree rooted at child
- Case 2: z has two children (harder: removing z creates holes)
- Let y be the next node that follows in an inorder traversal
- y is guaranteed to be a leaf node (it is the leftmost node in the right subtree of z)
- Swap z and y
- Remove z
- Runtime is $O(\boldsymbol{h})$, where \boldsymbol{h} is the height of the tree

BST - Tree-Delete(T, k)

Case 1(a): z has no children

Ex: Delete 84

BST - Tree-Delete(T, k)

Case 1(a): z has no children

Ex: Delete 84

BST - Tree-Delete(T, k)
Case 1(b): z has one child

Ex: Delete 25

BST - Tree-Delete(T, k)
Case 1(b): z has one child

Ex: Delete 25

BST - Tree-Delete(T, k)

Case 2: z has two children

Find the first internal node y that follows z in an inorder traversal
Swap z and y; Remove z

Ex: Delete 20

BST - Tree-Delete(T, k)

Case 2: z has two children

Find the first internal node y that follows z in an inorder traversal
Swap z and y; Remove z

Ex: Delete 20

BST - Tree-Delete(T, k)

Case 2: z has two children

Find the first internal node y that follows z in an inorder traversal
Swap z and y; Remove z

Ex: Delete 20

Performance of BST operations

- Space used for BST is O(n)
- Runtime of all operations is $O(h)$

What is h in the worst case?

- Consider inserting the sequence $1,2, \ldots, n-1, n$
- Worst case height $h \in O(n)$.

Other

- You are given two sorted integer arrays A and B such that no integer is contained twice in the same array. A and B are nearly identical. However, B is missing exactly one number. Find the missing number in B.
- You are given a sorted array A of distinct integers. Determine whether there exists an index i such that $A[i]=i$.

