
Hash Tables
CLRS 11.1, 11.2, 11.4

(+ some supplemental material)

Hash table: an unordered dictionary which stores a searchable collection of
key-element items, implemented via
• an array, and
• hash function.

Hash Table & Hash Functions
A hash table consists of:
• array (called table) T of size 𝑚
• hash function ℎ ∶ 𝑈 → {0,1, … ,𝑚 − 1}, which maps keys of a given type to integers in a

fixed integer interval
• Ex: ℎ 𝑥 = 𝑥 mod 𝑚 is a hash function for integer keys
• Ex: A mapping of all state names to integers 0-49
• The integer ℎ 𝑥 is called the hash value of key x. We also say x hashes to h(x)

Goal:
Store item (k, o)
at index i = h(k)
in the table.

Example hash table
A hash table to store personnel records, where each key k is the social security
number of the employee.
• Use array of size m=10,000
• Hash function h(x) = last four digits of x

Æ

Æ

Æ

Æ

0
1
2
3
4

9997
9998
9999

…

451-22-0004

981-10-0002

200-75-9998

025-61-0001

The problem of collisions
• A collision occurs when two different keys hash to the same slot.

• Prevent collisions à Depends on the hash function
• A universal hash function reduces the probability of collisions [CLRS 11.3]
• A perfect hash function guarantees no collisions, at the cost of more memory

[CLRS 11.5]

• Handle collisions systematically
• Chaining
• Each slot may contain multiple items
• If a collision occurs, append it to the bucket

• Open Addressing (linear probing, quadratic probing, double hashing)
• Each slot contains at most one item
• If a collision occurs, find a different slot which is empty
• Various approaches to finding an empty slot

Collision Handling

Chaining
• each cell in the table points to a linked list of elements that map there
• simple, but requires additional memory outside the table

Open Addressing
• the colliding item is placed in a different cell of the table
• no additional memory, but complicates searching/removing
• common types: linear probing, quadratic probing, double hashing

Æ

Æ
Æ

0
1
2
3
4 451-22-0004 981-10-0004

025-61-0001

Open addressing: linear probing
• Place the colliding item in the next (circularly) available table cell

try 𝑇 ℎ 𝑘 + 𝑖 mod 𝑚 for 𝑖 = 0,1,2, …
• Colliding items cluster together, causing future collisions to cause a longer

sequence of probes (searches for next available cell)

• Example:
• h(x) = x mod 13
• Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

h(18) = 18 mod 13 = 5
41 mod 13 = 2
22 mod 13 = 9
44 mod 13 = 5
59 mod 13 = 7
32 mod 13 = 6
31 mod 13 = 5
73 mod 13 = 8

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

Searching for an item
• Start at cell h(k)
• Check consecutive locations until one of the following occurs
• An item with key k is found, or
• An empty cell is found, or
• m cells have been unsuccessfully probed

Open addressing: double hashing
• Use a secondary hash function 𝑑 𝑘 to place items in first available cell

try 𝑇 ℎ 𝑘 + 𝑖 ⋅ 𝑑 𝑘 mod 𝑚 for 𝑖 = 0,1,2, …
• 𝑑 𝑘 cannot have zero values
• The table size 𝑚 must be a prime to allow probing of all the cells

• Example:
• h(k) = k mod 13
• d(k) = 1 + (k mod 7)
• Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 44 22 73
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 5 5
41 2 7 2
22 9 2 9
44 5 3 5 8
59 7 4 7
32 6 5 6
31 5 4 5 9 0
73 8 4 8 12

Performance of hashing
• In the worst case, searches, insertions and removals on a hash table take

O(n) time
• occurs when all inserted keys collide

• The load factor 𝛼 = 𝑛/𝑚 affects the performance of a hash table
• Assuming that the hash values are like random numbers, it can be shown

that the expected number of probes for an insertion with open
addressing is !

!"#
• The expected number of probes for an insertion with chaining is
𝑂 1 + 𝛼

• The expected running time of all the dictionary ADT operations in a hash
table is O(1)

• In practice, hashing is very fast provided the load factor is not close to 100%

Other
How efficiently can you solve these common interview questions?
Hint: I selected these ones because there is an approach which uses a hash table

• You are given an array A of integers. Determine the integer that occurs most
frequently in A.

• You are given an array A of integers, and a number x. Determine whether there
exists two elements in A whose sum is exactly x.

