Hash Tables

CLRS 11.1, 11.2, 11.4
(+ some supplemental material)

Hash table: an unordered dictionary which stores a searchable collection of key-element items, implemented via

- an array, and
- hash function.

Hash Table \& Hash Functions

A hash table consists of:

- array (called table) T of size m
- hash function $h: U \rightarrow\{0,1, \ldots, m-1\}$, which maps keys of a given type to integers in a fixed integer interval
- Ex: $h(x)=x \bmod m$ is a hash function for integer keys
- Ex: A mapping of all state names to integers 0-49
- The integer $h(x)$ is called the hash value of key x. We also say x hashes to $\mathrm{h}(\mathrm{x})$

Goal:

Store item ($k, 0$) at index $i=h(k)$ in the table.

Example hash table

A hash table to store personnel records, where each key k is the social security number of the employee.

- Use array of size $m=10,000$
- Hash function $h(x)=$ last four digits of x

The problem of collisions

- A collision occurs when two different keys hash to the same slot.
- Prevent collisions \rightarrow Depends on the hash function
- A universal hash function reduces the probability of collisions [CLRS 11.3]
- A perfect hash function guarantees no collisions, at the cost of more memory [CLRS 11.5]
- Handle collisions systematically
- Chaining
- Each slot may contain multiple items
- If a collision occurs, append it to the bucket
- Open Addressing (linear probing, quadratic probing, double hashing)
- Each slot contains at most one item
- If a collision occurs, find a different slot which is empty
- Various approaches to finding an empty slot

Collision Handling

Chaining

- each cell in the table points to a linked list of elements that map there
- simple, but requires additional memory outside the table

Open Addressing

- the colliding item is placed in a different cell of the table
- no additional memory, but complicates searching/removing
- common types: linear probing, quadratic probing, double hashing

Open addressing: linear probing

- Place the colliding item in the next (circularly) available table cell

$$
\text { try } \quad T[(h(k)+i) \bmod m] \text { for } i=0,1,2, \ldots
$$

- Colliding items cluster together, causing future collisions to cause a longer sequence of probes (searches for next available cell)
- Example:
- $h(x)=x \bmod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

$$
h(18)=18 \bmod 13=5
$$

$$
41 \bmod 13=2
$$

$$
22 \bmod 13=9
$$

$$
44 \bmod 13=5
$$

$$
59 \bmod 13=7
$$

$$
32 \bmod 13=6
$$

$$
31 \bmod 13=5
$$

$$
73 \bmod 13=8
$$

Searching for an item

- Start at cell $h(k)$
- Check consecutive locations until one of the following occurs
- An item with key k is found, or
- An empty cell is found, or
- m cells have been unsuccessfully probed

Open addressing: double hashing

- Use a secondary hash function $d(k)$ to place items in first available cell try $T[(h(k)+i \cdot d(k)) \bmod m]$ for $i=0,1,2, \ldots$
- $d(k)$ cannot have zero values
- The table size m must be a prime to allow probing of all the cells
- Example:
- $\boldsymbol{h}(\boldsymbol{k})=\boldsymbol{k} \bmod 13$
- $\boldsymbol{d}(\boldsymbol{k})=1+(\boldsymbol{k} \bmod 7)$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

\boldsymbol{k}	$\boldsymbol{h}(\boldsymbol{k})$	$\boldsymbol{d}(\boldsymbol{k})$		Probes		
18	5	5	5			
41	2	7	7	2		
22	9	2	9			
44	5	3	5	8		
59	7	4	7			
32	6	5	6			
31	5	4	5	9	0	
73	8	4	8	12		

Performance of hashing

- In the worst case, searches, insertions and removals on a hash table take $\mathrm{O}(\mathrm{n})$ time
- occurs when all inserted keys collide
- The load factor $\alpha=n / m$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $\frac{1}{1-\alpha}$
- The expected number of probes for an insertion with chaining is $O(1+\alpha)$
- The expected running time of all the dictionary ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%

Other

How efficiently can you solve these common interview questions?

Hint: I selected these ones because there is an approach which uses a hash table

- You are given an array A of integers. Determine the integer that occurs most frequently in A .
- You are given an array A of integers, and a number x. Determine whether there exists two elements in A whose sum is exactly x.

