Growth of functions

CLRS3.1& 3.2

+ime

Algorithmic Purpose

* To determine the worst-case running time, we count the maximum number of
instructions an algorithm requires, as a function of the input size

Algorithm arrayMax(A, n) # instructions
currentMax = A[1] 2
fori=2tondo 2+n

if A[i] > currentMax then 2(n-1)

currentMax = Ali] 2(n-1)

{ increment counter i } 2(n-1)
return currentMax 1

7n-1

* However, rather than expressing the exact number of instructions, we use
asymptotic complexity to express it in terms of growth rate.

* "The algorithm arrayMax has a worst-case running time of O(n)."

Asymptotic Complexity

* Worst case running time of an algorithm as a function of input size n for large n.

* Expressed using only the highest-order term in the expression for the exact
running time

—Instead of exact running time, say O(n?)

* Written using asymptotic notation (0, 2, ®, 0, ®)
—Ex: f(n) = O(n?)
—Describes how f(n) grows in comparison to n?

* The notations describe different rate-of-growth relations between the defining
function and the defined set of functions

» Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs

O-notation (“Big Oh”) cg(n)
For functions g(n), we define 0(g(n)) as the set:

0(g(n)) = { f(n) : 3 positive constants ¢ and ny,
such that Vn = n,,
we have 0 < f(n) < cg(n) }

n
ng .
" f(n) = 0(g(n))
* Technically, we would write f(n) € O(g(n))
* Often, you will see equivalently the notation f(n) = 0(g(n))

* Intuitively: O(g (n)) is the set of functions whose rate of growth is the same as or
lower than g(n)

* g(n) is an asymptotic upper bound for f(n)

O-notation: Examples

For functions g(n), we define O(g(n)) as the set:

0(g(n)) = { f(n) : 3 positive constants ¢ and ny,
such that Vn = n,,
wehave 0 < f(n) < cg(n) }

* 0(n) includes: * 0(n?) includes:
* fln)=2n+10 e fln)=n?+1
*fln)=n+1 e f(n)=n%+n
* f(n) = 10000n « f(n) = 10000n? +10000n + 300
* f(n) =10000n + 300 * f(n) = n1%°

* The function n? is not 0 (n)
* the inequality n? < cn cannot be satisfied since c is a constant
* Technically, n is 0(n?), but...

* We would not use this to express the run time of an algorithm
* We want to use tight upper bounds to be precise

()-notation (“Big Omega”)
(n)
For functions g(n), we define Q(g(n)) as the set: Sl
Q(g(m)) = { f(n) : 3 positive constants c and n, cg(n)
such that Vn = n,,

we have 0 < cg(n) < f(n) }

n

"0) = Q)

* Intuitively: Q(g(n)) is the set of functions whose rate of growth is the same as or
higher than g(n)

* g(n) is an asymptotic lower bound for f(n)

(0-notation: Examples / notes

For functions g(n), we define Q(g(n)) as the set:

Q(g(n)) = { f(n) : 3 positive constants c and n,,
such that Vn = n,,
we have 0 < cg(n) < f(n) }

* When we say the running time (no modifier) of an algorithm is Q(g(n)), it
applies to every input

* So, we are giving a lower bound on the best-case running time.

* Example: insertion sort
* running time belongs to both Q(n) and 0 (n?)
e running time is not Q(n?)
* worst-case running time is Q(n?)

crg(n)

®-notation (“Theta”)

For functions g(n), we define ©(g(n)) as the set: f(n)

0(g(n)) = { f(n) : 3 positive constants cy, ¢z, ny, c18(n)
such that Vn > n,,
we have 0 < ¢;9(n) < f(n) < c;9() }

n

f(n) =0(g(n))

Theorem 3.1
For any two functions f(n) and g(n), we have f(n) = 0(g(n)) if and only if

f(m) =0(g(n))and f(n) = Q(g(n)).

* Intuitively: @(g(n)) is the set of functions that have the same rate of growth as
gn)

« g(n) is an asymptotically tight bound for f(n)

Relationship between O, (), ®

cg(n)

n

g f(n) =0(gn))

"0 fn) = Q)

n

c28(n)

f(n)

c18(n)

n
no

f(n) =0(g(n))

Relatives of O and ()

"Little oh” “Little omega”
o(gM) ={f(M): Vc>0,3n,20, w(g))={f(n): Vc>0,an,=0,
such that Vn = n,, such that Vn = n,,
wehave 0 < f(n) < cg(n) } wehave 0 < cg(n) < f(n)}

Analogy between comparing functions f and g and comparing numbers a and b:
* f(n) = O(g(n)) islike a<b
* f(n) = Q(g(n)) is like a = b
* f(n) = @(g(n)) islike a= b
* f(n) = o(g(n)) is like a < b
* f(n) = a)(g(n)) is like a > b

Properties

* Transitivity:
* f(n) = @(g(n)) and g(n) = @(h(n)) implies f(n) = G)(h(n))
* f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = 0(h(n))
* f(n) = Q(g(n)) and g(n) = Q(h(n)) implies f(n) = Q(h(n))
* f(n) = o(g(n)) and g(n) = o(h(n)) implies f(n) = o(h(n))
* f(n) = a)(g(n)) and g(n) = a)(h(n)) implies f(n) = w(h(n))

 Reflexivity:

- f(n) =0(f(n))
* f(n) =0(f(n))
« f(n) =Q(f(n))

* Symmetry:

* f(n) =0(gm)) ifandonlyif g(n) = O(f(n))

* Transpose symmetry:
« f(n) =0(g(n)) ifand only if g(n) = Q(f(n))
* f(n) = o(g(n)) if and only if g(n) = a)(f(n))

Math to review
* Logarithms & Exponentials (3.2)

logga=c if a=b°

properties of logarithms: prope([)ti?s ofbexponentials:
logp,(xy) = logyx + logpy gbc C: (:aﬁ)ca C
logy, (x/y) = logyx - log,y ab /a¢ = glb-d
log,x® = alog,x b = a o8P

C— o C*log_b
log,a = log,a/log,b be=a %

e Summations (Appendix A)

n
2k=1+2+---+n
k=1

= ~n(n+1) =0(n?)

* Sets and relations (Appendix B)
* Counting and probability (Appendix C)
* Proof techniques

12

Relationship between standard functions (3.2)

* When we discuss logarithms, we usually mean binary logarithm (base 2)

e Fact 1: n? = o(a™) for all constants a and b such that a > 1

* Any exponential function with a base strictly greater than 1 grows faster
than any polynomial function

e Fact 2: log? n = o(n?) for any positive constant a and b

* Any positive polynomial function grows faster than any polylogarithmic
function.

* Examples which apply Fact 1 or Fact 2:
* logn = o(n)
* nlogn = o(n?)
e n° =0(2")

Example algorithm analysis: computing prefix average

We give two algorithms for computing prefix averages

35
* the i-th prefix average of an array Xis mX
the average of the first j elements of X: 30 A ay]
X(1]+ X2+ ...+ X][i 25 =
Ali] = [1] + X]]_ li] T —
l 20 HIH A 5
IR n inl i i in inl i
* Prefix average has applications in 10 H1HHT] H] E
economic and statistics
5__ B S N N (N AN I
O I I I I I I

Example algorithm analysis: computing prefix average

Each algorithm takes as input an array X of n integers, and outputs an array A of

prefix averages of X

Algorithm prefixAvgVI(X, n)
Let A be an array of n integers
fori=1ton do

s=X[1]

forj=2toido

s =5+ X[j]

Ali]=s/1

return 4

Algorithm prefixAvgV2(X, n)
Let A be an array of n integers
s=0
fori=1ton do

s =5+ X|i]

Ali]=s/1
return A

What is the running time of each algorithm? Which is better?

In-class example: algorithm analysis

What is the run time of each algorithm?

Algorithm Foo(n)

s=0

fori=1ton do
s=s+1

return s

Algorithm Bar(n)
s=0
fori=1ton do
forj=1ton do
s=s+1
return s

Algorithm Cow(n)
s=0
fori=1ton do
forj=1to)5 do
s=s+1
return s

Algorithm Cat(n)

s=0

fori=1to 5 do
s=s+1

return s

Algorithm Bird(n)
s=0
fori=1to 5 do
forj=1to)5 do
s=s+1
return s

Algorithm Dog(n)

S=n

whiles > 1
s=5/2

return s

