Growth of functions

CLRS 3.1 \& 3.2

Algorithmic Purpose

- To determine the worst-case running time, we count the maximum number of instructions an algorithm requires, as a function of the input size

$7 n-1$
- However, rather than expressing the exact number of instructions, we use asymptotic complexity to express it in terms of growth rate.
- "The algorithm arrayMax has a worst-case running time of $O(n)$."

Asymptotic Complexity

- Worst case running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time
- Instead of exact running time, say $O\left(n^{2}\right)$
- Written using asymptotic notation $(0, \Omega, \Theta, o, \omega)$
-Ex: $f(n)=O\left(n^{2}\right)$
- Describes how $f(n)$ grows in comparison to n^{2}
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs

O-notation ("Big Oh")

For functions $g(n)$, we define $O(g(n))$ as the set:
$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $0 \leq f(n) \leq c g(n)\}$

- Technically, we would write $f(n) \in O(g(n))$
- Often, you will see equivalently the notation $f(n)=O(g(n))$
- Intuitively: $O(g(n))$ is the set of functions whose rate of growth is the same as or lower than $g(n)$
- $g(n)$ is an asymptotic upper bound for $f(n)$

O-notation: Examples

For functions $g(n)$, we define $O(g(n))$ as the set:
$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $0 \leq f(n) \leq c g(n)\}$

- $O(n)$ includes:
- $f(n)=2 n+10$
- $f(n)=n+1$
- $f(n)=10000 n$
- $f(n)=10000 n+300$
- $O\left(n^{2}\right)$ includes:
- $f(n)=n^{2}+1$
- $f(n)=n^{2}+n$
- $f(n)=10000 n^{2}+10000 n+300$
- $f(n)=n^{1.99}$
- The function n^{2} is not $O(n)$
- the inequality $n^{2} \leq c n$ cannot be satisfied since c is a constant
- Technically, n is $O\left(n^{2}\right)$, but...
- We would not use this to express the run time of an algorithm
- We want to use tight upper bounds to be precise

Ω-notation ("Big Omega")

For functions $g(n)$, we define $\Omega(g(n))$ as the set:

$$
\begin{aligned}
& \Omega \text {-notation ("Big Omega") } \\
& \text { For functions } g(n) \text {, we define } \Omega(g(n)) \text { as the set: } \\
& \Omega(g(n))=\left\{f(n): \exists \text { positive constants } c \text { and } n_{0},\right. \\
& \text { such that } \forall n \geq n_{0}, \\
& \text { we have } 0 \leq c g(n) \leq f(n)\}
\end{aligned}
$$

- Intuitively: $\Omega(g(n))$ is the set of functions whose rate of growth is the same as or higher than $g(n)$
- $g(n)$ is an asymptotic lower bound for $f(n)$

Ω-notation: Examples / notes

For functions $g(n)$, we define $\Omega(g(n))$ as the set:

$$
\begin{array}{r}
\Omega(g(n))=\left\{f(n): \exists \text { positive constants } c \text { and } n_{0}\right. \\
\text { such that } \forall n \geq n_{0} \\
\text { we have } 0 \leq \operatorname{cg}(n) \leq f(n)\}
\end{array}
$$

- When we say the running time (no modifier) of an algorithm is $\Omega(g(n)$), it applies to every input
- So, we are giving a lower bound on the best-case running time.
- Example: insertion sort
- running time belongs to both $\Omega(n)$ and $O\left(n^{2}\right)$
- running time is not $\Omega\left(n^{2}\right)$
- worst-case running time is $\Omega\left(n^{2}\right)$

Θ-notation ("Theta")

For functions $g(n)$, we define $\Theta(g(n))$ as the set:

$$
\begin{array}{r}
\Theta(g(n))=\left\{f(n): \exists \text { positive constants } c_{1}, c_{2}, n_{0},\right. \\
\text { such that } \forall n \geq n_{0}, \\
\text { we have } \left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
\end{array}
$$

Theorem 3.1

For any two functions $f(n)$ and $g(n)$, we have $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

- Intuitively: $\Theta(g(n))$ is the set of functions that have the same rate of growth as $g(n)$
- $g(n)$ is an asymptotically tight bound for $f(n)$

Relationship between O, Ω, Θ

Relatives of O and Ω

"Little oh"

$$
\mathrm{o}(g(n))=\left\{f(n): \forall c>0, \exists n_{0} \geq 0,\right.
$$ such that $\forall n \geq n_{0}$,

$$
\text { we have } 0 \leq f(n) \leq c g(n)\}
$$

"Little omega"

$$
\begin{array}{r}
\omega(g(n))=\left\{f(n): \forall c>0, \exists n_{0} \geq 0\right. \\
\text { such that } \forall n \geq n_{0} \\
\text { we have } 0 \leq c g(n)<f(n)\}
\end{array}
$$

Analogy between comparing functions f and g and comparing numbers a and b :

- $f(n)=O(g(n))$ is like $a \leq b$
- $f(n)=\Omega(g(n))$ is like $a \geq b$
- $f(n)=\Theta(g(n))$ is like $a=b$
- $f(n)=o(g(n))$ is like $a<b$
- $f(n)=\omega(g(n))$ is like $a>b$

Properties

- Transitivity:
- $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ implies $f(n)=\Theta(h(n))$
- $f(n)=O(g(n))$ and $g(n)=O(h(n))$ implies $f(n)=O(h(n))$
- $f(n)=\Omega(g(n))$ and $g(n)=\Omega(h(n))$ implies $f(n)=\Omega(h(n))$
- $f(n)=o(g(n))$ and $g(n)=o(h(n))$ implies $f(n)=o(h(n))$
- $f(n)=\omega(g(n))$ and $g(n)=\omega(h(n))$ implies $f(n)=\omega(h(n))$
- Reflexivity:
- $f(n)=\Theta(f(n))$
- $f(n)=O(f(n))$
- $f(n)=\Omega(f(n))$
- Symmetry:
- $f(n)=\Theta(g(n))$ if and only if $g(n)=\Theta(f(n))$
- Transpose symmetry:
- $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$
- $f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$

Math to review

- Logarithms \& Exponentials (3.2)

$$
\log _{b} a=c \quad \text { if } \quad a=b^{c}
$$

properties of logarithms: properties of exponentials:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x^{a}=a \log _{b} x \\
& \log _{b} a=\log _{x} a / \log _{x} b
\end{aligned}
$$

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a^{\log _{a} b} \\
& b^{c}=a^{c} \log _{a} b
\end{aligned}
$$

- Summations (Appendix A)

$$
\begin{aligned}
\sum_{k=1}^{n} k & =1+2+\cdots+n \\
& =\frac{1}{2} n(n+1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

- Sets and relations (Appendix B)
- Counting and probability (Appendix C)
- Proof techniques

Relationship between standard functions (3.2)

- When we discuss logarithms, we usually mean binary logarithm (base 2)
- Fact 1: $n^{b}=o\left(a^{n}\right)$ for all constants a and b such that $a>1$
- Any exponential function with a base strictly greater than 1 grows faster than any polynomial function
- Fact 2: $\log ^{b} n=o\left(n^{a}\right)$ for any positive constant a and b
- Any positive polynomial function grows faster than any polylogarithmic function.
- Examples which apply Fact 1 or Fact 2:
- $\log n=o(n)$
- $n \log n=o\left(n^{2}\right)$
- $n^{5}=o\left(2^{n}\right)$

Example algorithm analysis: computing prefix average

We give two algorithms for computing prefix averages

- the i-th prefix average of an array \boldsymbol{X} is the average of the first i elements of \boldsymbol{X} :

$$
A[i]=\frac{X[1]+X[2]+\ldots+X[i]}{i}
$$

- Prefix average has applications in economic and statistics

Example algorithm analysis: computing prefix average

Each algorithm takes as input an array X of n integers, and outputs an array A of prefix averages of X

```
Algorithm prefixAvgV1(X, n)
Let \boldsymbol{A}}\mathrm{ be an array of }\boldsymbol{n}\mathrm{ integers
for i=1 to n do
    s=X[1]
    for }\boldsymbol{j}=2\mathrm{ to }\boldsymbol{i}\mathrm{ do
        s=s+X[j]
    A[i]=s/i
return A
```

What is the running time of each algorithm? Which is better?

In-class example: algorithm analysis
What is the run time of each algorithm?

```
Algorithm Foo(n)
s=0
for i=1 to n do
    s=s+1
```

return s

Algorithm Cat(n)
$\mathrm{s}=0$
for $i=1$ to 5 do
$\mathrm{s}=\mathrm{s}+1$
return s

$$
\begin{aligned}
& \text { Algorithm } \operatorname{Bar}(\boldsymbol{n}) \\
& \mathrm{s}=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \quad \mathrm{s}=\mathrm{s}+1
\end{aligned}
$$

return s

$$
\begin{aligned}
& \text { Algorithm } \operatorname{Bird}(\boldsymbol{n}) \\
& \mathrm{s}=0 \\
& \text { for } i=1 \text { to } 5 \text { do } \\
& \text { for } j=1 \text { to } 5 \text { do } \\
& \quad \mathrm{s}=\mathrm{s}+1
\end{aligned}
$$

Algorithm $\operatorname{Cow}(n)$
s=0
for $i=1$ to n do

$$
\text { for } j=1 \text { to } 5 \text { do }
$$

$$
\mathrm{s}=\mathrm{s}+1
$$

return s

Algorithm $\operatorname{Dog}(n)$

$\mathrm{s}=n$
while $s>1$

$$
s=s / 2
$$

return s

