
Growth of functions
CLRS 3.1 & 3.2

Algorithmic Purpose
• To determine the worst-case running time, we count the maximum number of

instructions an algorithm requires, as a function of the input size

• However, rather than expressing the exact number of instructions, we use
asymptotic complexity to express it in terms of growth rate.
• ”The algorithm arrayMax has a worst-case running time of O(n)."

2

Algorithm arrayMax(A, n)
currentMax = A[1]
for i = 2 to n do

if A[i] > currentMax then
currentMax = A[i]

{ increment counter i }
return currentMax

instructions
2

2 + n
2(n - 1)
2(n - 1)
2(n - 1)

1

7n - 1

Asymptotic Complexity
• Worst case running time of an algorithm as a function of input size 𝑛 for large 𝒏.

• Expressed using only the highest-order term in the expression for the exact
running time
– Instead of exact running time, say O(n2)

• Written using asymptotic notation (O, W, Q, o, w)
–Ex: f(n) = O(n2)
–Describes how f(n) grows in comparison to n2

• The notations describe different rate-of-growth relations between the defining
function and the defined set of functions

• Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs

3

O-notation (“Big Oh”)
For functions 𝑔 𝑛 , we define 𝑂(𝑔 𝑛) as the set:

• Technically, we would write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛
• Often, you will see equivalently the notation 𝑓 𝑛 = 𝑂(𝑔 𝑛)

• Intuitively: 𝑂 𝑔 𝑛 is the set of functions whose rate of growth is the same as or
lower than 𝑔(𝑛)

• 𝑔 𝑛 is an asymptotic upper bound for 𝑓(𝑛)

4

𝑂 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∃ positive constants 𝑐 and 𝑛!,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 }

O-notation: Examples

• 𝑂 𝑛 includes:
• f(n) = 2n + 10
• f(n) = n + 1
• f(n) = 10000n
• f(n) = 10000n + 300

5

• 𝑂 𝑛" includes:
• f(n) = n2 + 1
• f(n) = n2 + n
• f(n) = 10000n2 +10000n + 300
• f(n) = n1.99

• The function 𝑛" is not 𝑂(𝑛)
• the inequality 𝑛! ≤ 𝑐𝑛 cannot be satisfied since 𝑐 is a constant

• Technically, 𝑛 is 𝑂(𝑛"), but…
• We would not use this to express the run time of an algorithm
• We want to use tight upper bounds to be precise

For functions 𝑔 𝑛 , we define 𝑂(𝑔 𝑛) as the set:

𝑂 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∃ positive constants 𝑐 and 𝑛!,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 }

Ω-notation (“Big Omega”)
For functions 𝑔 𝑛 , we define Ω 𝑔 𝑛 as the set:

• Intuitively: Ω 𝑔 𝑛 is the set of functions whose rate of growth is the same as or
higher than 𝑔(𝑛)

• 𝑔 𝑛 is an asymptotic lower bound for 𝑓(𝑛)

6

Ω 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∃ positive constants 𝑐 and 𝑛!,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 }

Ω-notation: Examples / notes
For functions 𝑔 𝑛 , we define Ω 𝑔 𝑛 as the set:

• When we say the running time (no modifier) of an algorithm is Ω 𝑔 𝑛 , it
applies to every input
• So, we are giving a lower bound on the best-case running time.

• Example: insertion sort
• running time belongs to both Ω 𝑛 and 𝑂 𝑛"

• running time is not Ω 𝑛"
• worst-case running time is Ω 𝑛"

7

Ω 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∃ positive constants 𝑐 and 𝑛!,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 }

Θ-notation (“Theta”)
For functions 𝑔 𝑛 , we define Θ 𝑔 𝑛 as the set:

• Intuitively: Θ 𝑔 𝑛 is the set of functions that have the same rate of growth as
𝑔(𝑛)

• 𝑔 𝑛 is an asymptotically tight bound for 𝑓(𝑛)
8

Θ 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∃ positive constants 𝑐#, 𝑐", 𝑛!,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑐#𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐"𝑔(𝑛) }

Theorem 3.1
For any two functions 𝑓(𝑛) and 𝑔(𝑛), we have 𝑓 𝑛 = Θ(𝑔 𝑛) if and only if
𝑓 𝑛 = 𝑂(𝑔 𝑛) and 𝑓 𝑛 = Ω(𝑔 𝑛).

Relationship between 𝑂,Ω, Θ

9

Relatives of 𝑂 and Ω
”Little oh” “Little omega”

10

o 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∀ 𝑐 > 0, ∃ 𝑛! ≥ 0,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 }

𝜔 𝑔 𝑛 = { 𝑓 𝑛 ∶ ∀ 𝑐 > 0, ∃ 𝑛! ≥ 0,
such that ∀𝑛 ≥ 𝑛!,

we have 0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛 }

Analogy between comparing functions f and g and comparing numbers a and b:

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 is like 𝑎 ≤ 𝑏
• 𝑓 𝑛 = Ω 𝑔 𝑛 is like 𝑎 ≥ 𝑏
• 𝑓 𝑛 = Θ 𝑔 𝑛 is like 𝑎 = 𝑏
• 𝑓 𝑛 = 𝑜 𝑔 𝑛 is like 𝑎 < 𝑏
• 𝑓 𝑛 = 𝜔 𝑔 𝑛 is like 𝑎 > 𝑏

Properties
• Transitivity:

• 𝑓 𝑛 = Θ 𝑔 𝑛 and 𝑔 𝑛 = Θ ℎ 𝑛 implies 𝑓 𝑛 = Θ ℎ 𝑛
• 𝑓 𝑛 = 𝑂 𝑔 𝑛 and 𝑔 𝑛 = 𝑂 ℎ 𝑛 implies 𝑓 𝑛 = 𝑂(ℎ 𝑛)
• 𝑓 𝑛 = Ω 𝑔 𝑛 and 𝑔 𝑛 = Ω ℎ 𝑛 implies 𝑓 𝑛 = Ω(ℎ 𝑛)
• 𝑓 𝑛 = 𝑜 𝑔 𝑛 and 𝑔 𝑛 = 𝑜 ℎ 𝑛 implies 𝑓 𝑛 = 𝑜(ℎ 𝑛)
• 𝑓 𝑛 = 𝜔 𝑔 𝑛 and 𝑔 𝑛 = 𝜔 ℎ 𝑛 implies 𝑓 𝑛 = 𝜔(ℎ 𝑛)

• Reflexivity:
• 𝑓 𝑛 = Θ 𝑓 𝑛
• 𝑓 𝑛 = 𝑂(𝑓 𝑛)
• 𝑓 𝑛 = Ω(𝑓 𝑛)

• Symmetry:
• 𝑓 𝑛 = Θ 𝑔 𝑛 if and only if 𝑔 𝑛 = Θ 𝑓 𝑛

• Transpose symmetry:
• 𝑓 𝑛 = 𝑂 𝑔 𝑛 if and only if 𝑔 𝑛 = Ω 𝑓 𝑛
• 𝑓 𝑛 = 𝑜 𝑔 𝑛 if and only if 𝑔 𝑛 = 𝜔 𝑓 𝑛

11

Math to review
• Logarithms & Exponentials (3.2)

• Summations (Appendix A)

• Sets and relations (Appendix B)
• Counting and probability (Appendix C)
• Proof techniques

12

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)

b = a logab
bc = a c*logab

logba = c if a = bc

!
!"#

$

𝑘 = 1 + 2 +⋯+ 𝑛

= #
%
𝑛 𝑛 + 1 = Θ 𝑛%

Relationship between standard functions (3.2)
• When	we	discuss	logarithms,	we	usually	mean	binary	logarithm	(base	2)

• Fact	1:		𝑛$ = 𝑜 𝑎% for all constants 𝑎 and 𝑏 such that 𝑎 > 1
• Any exponential function with a base strictly greater than 1 grows faster

than any polynomial function

• Fact	2:	 log$ 𝑛 = 𝑜 𝑛& for any positive constant 𝑎 and 𝑏
• Any positive polynomial function grows faster than any polylogarithmic

function.

• Examples which apply Fact 1 or Fact 2:
• log 𝑛 = 𝑜 𝑛
• 𝑛 log 𝑛 = 𝑜 𝑛"

• 𝑛' = 𝑜 2%

13

Example algorithm analysis: computing prefix average

We give two algorithms for computing prefix averages

• the i-th prefix average of an array X is
the average of the first i elements of X:

• Prefix average has applications in
economic and statistics

14

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

𝑨 𝒊 =
𝑿 𝟏 + 𝑿 𝟐 + …+ 𝑿[𝒊]

𝒊

Example algorithm analysis: computing prefix average

Each algorithm takes as input an array X of n integers, and outputs an array A of
prefix averages of X

15

Algorithm prefixAvgV1(X, n)
Let A be an array of n integers
for i = 1 to n do

s = X[1]
for j = 2 to i do

s = s + X[j]
A[i] = s / i

return A

Algorithm prefixAvgV2(X, n)
Let A be an array of n integers
s = 0
for i = 1 to n do

s = s + X[i]
A[i] = s / i

return A

What is the running time of each algorithm? Which is better?

In-class example: algorithm analysis
What is the run time of each algorithm?

16

Algorithm Foo(n)
s = 0
for i = 1 to n do

s = s + 1
return s

Algorithm Bar(n)
s = 0
for i = 1 to n do

for j = 1 to n do
s = s + 1

return s

Algorithm Cow(n)
s = 0
for i = 1 to n do

for j = 1 to 5 do
s = s + 1

return s

Algorithm Cat(n)
s = 0
for i = 1 to 5 do

s = s + 1
return s

Algorithm Bird(n)
s = 0
for i = 1 to 5 do

for j = 1 to 5 do
s = s + 1

return s

Algorithm Dog(n)
s = n
while s > 1

s = s / 2
return s

