Growth of functions

CLRS 3.1 & 3.2

Algorithmic Purpose

• To determine the worst-case running time, we count the maximum number of instructions an algorithm requires, as a function of the input size

Algorithm arrayMax(A, n)	<u># instructions</u>
currentMax = A[1]	2
for <i>i</i> = 2 to <i>n</i> do	2 + <i>n</i>
<pre>if A[i] > currentMax then</pre>	2(n - 1)
currentMax = A[i]	2(n - 1)
{ increment counter <i>i</i> }	2(n - 1)
return currentMax	1

7*n* - 1

- However, rather than expressing the exact number of instructions, we use **asymptotic complexity** to express it in terms of growth rate.
 - "The algorithm arrayMax has a worst-case running time of O(n)."

Asymptotic Complexity

- Worst case running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the highest-order term in the expression for the exact running time
 - -Instead of exact running time, say $O(n^2)$
- Written using asymptotic notation ($O, \Omega, \Theta, o, \omega$)
 - $-Ex: f(n) = O(n^2)$
 - Describes how f(n) grows in comparison to n^2
- The notations describe different rate-of-growth relations between the defining function and the defined **set** of functions
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs

O-notation ("Big Oh")

For functions g(n), we define O(g(n)) as the set:

 $O(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le f(n) \le cg(n) \}$

- Technically, we would write $f(n) \in O(g(n))$
- Often, you will see equivalently the notation f(n) = O(g(n))
- Intuitively: O(g(n)) is the set of functions whose rate of growth is the same as or lower than g(n)
- g(n) is an **asymptotic upper bound** for f(n)

O-notation: Examples

For functions g(n), we define O(g(n)) as the set:

 $O(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le f(n) \le cg(n) \}$

- O(n) includes:
 - f(n) = 2n + 10
 - f(n) = n + 1
 - f(n) = 10000n
 - f(n) = 10000n + 300

- $O(n^2)$ includes:
 - $f(n) = n^2 + 1$
 - $f(n) = n^2 + n$
 - $f(n) = 10000n^2 + 10000n + 300$
 - $f(n) = n^{1.99}$

- The function n^2 is **not** O(n)
 - the inequality $n^2 \leq cn$ cannot be satisfied since c is a constant
- Technically, n is $O(n^2)$, but...
 - We would not use this to express the run time of an algorithm
 - We want to use tight upper bounds to be precise

$\Omega-\text{notation} ("Big Omega")$ For functions g(n), we define $\Omega(g(n))$ as the set: $\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le cg(n) \le f(n) \}$

• Intuitively: $\Omega(g(n))$ is the set of functions whose *rate of growth* is the same as or higher than g(n)

• g(n) is an **asymptotic lower bound** for f(n)

 $f(n) = \Omega(g(n))$

 n_0

f(n)

cg(n)

Ω -notation: Examples / notes

For functions g(n), we define $\Omega(g(n))$ as the set:

 $\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le cg(n) \le f(n) \}$

- When we say the *running time* (no modifier) of an algorithm is $\Omega(g(n))$, it applies to every input
 - So, we are giving a lower bound on the best-case running time.
- Example: insertion sort
 - running time belongs to both $\Omega(n)$ and $O(n^2)$
 - running time is **not** $\Omega(n^2)$
 - worst-case running time is $\Omega(n^2)$

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

- Intuitively: $\Theta(g(n))$ is the set of functions that have the same rate of growth as g(n)
- g(n) is an **asymptotically tight bound** for f(n)

Relationship between O, Ω, Θ

Relatives of O and Ω

"Little oh"

$$o(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 \ge 0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le f(n) \le cg(n) \}$$

"Little omega"

 $\omega(g(n)) = \{ f(n) : \forall c > 0, \exists n_0 \ge 0, \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le cg(n) < f(n) \}$

Analogy between comparing functions f and g and comparing numbers a and b:

- f(n) = O(g(n)) is like $a \le b$
- $f(n) = \Omega(g(n))$ is like $a \ge b$
- $f(n) = \Theta(g(n))$ is like a = b
- f(n) = o(g(n)) is like a < b
- $f(n) = \omega(g(n))$ is like a > b

Properties

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$
 - f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n))
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$
 - f(n) = o(g(n)) and g(n) = o(h(n)) implies f(n) = o(h(n))
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ implies $f(n) = \omega(h(n))$
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
 - f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$

Math to review

• Logarithms & Exponentials (3.2)

$$\log_b a = c$$
 if $a = b^c$

properties of logarithms:

$$log_{b}(xy) = log_{b}x + log_{b}y$$
$$log_{b}(x/y) = log_{b}x - log_{b}y$$
$$log_{b}x^{a} = alog_{b}x$$
$$log_{b}a = log_{x}a/log_{x}b$$

$$a^{(b+c)} = a^{b}a^{c}$$
$$a^{bc} = (a^{b})^{c}$$
$$a^{b} / a^{c} = a^{(b-c)}$$
$$b = a^{\log_{a} b}$$
$$b^{c} = a^{c*\log_{a} b}$$

• Summations (Appendix A)

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n$$
$$= \frac{1}{2}n(n+1) = \Theta(n^2)$$

- Sets and relations (Appendix B)
- Counting and probability (Appendix C)
- Proof techniques

Relationship between standard functions (3.2)

- When we discuss logarithms, we usually mean binary logarithm (base 2)
- Fact 1: $n^b = o(a^n)$ for all constants a and b such that a > 1
 - Any exponential function with a base strictly greater than 1 grows faster than any polynomial function
- Fact 2: $\log^b n = o(n^a)$ for any positive constant *a* and *b*
 - Any positive polynomial function grows faster than any polylogarithmic function.
- Examples which apply Fact 1 or Fact 2:
 - $\log n = o(n)$
 - $n \log n = o(n^2)$
 - $n^5 = o(2^n)$

Example algorithm analysis: computing prefix average

We give two algorithms for computing prefix averages

 the *i*-th prefix average of an array X is the average of the first *i* elements of X:

$$A[i] = \frac{X[1] + X[2] + \dots + X[i]}{i}$$

Prefix average has applications in economic and statistics

Example algorithm analysis: computing prefix average

Each algorithm takes as input an array X of n integers, and outputs an array A of prefix averages of X

```
Algorithm prefixAvgV1(X, n)

Let A be an array of n integers

for i = 1 to n do

s = X[1]

for j = 2 to i do

s = s + X[j]

A[i] = s / i

return A
```

```
Algorithm prefixAvgV2(X, n)
Let A be an array of n integers
s = 0
for i = 1 to n do
s = s + X[i]
A[i] = s / i
return A
```

What is the running time of each algorithm? Which is better?

In-class example: algorithm analysis

What is the run time of each algorithm?

```
Algorithm Foo(n)

s = 0

for i = 1 to n do

s = s + 1

return s
```

Algorithm Bar(n) s = 0for i = 1 to n do for j = 1 to n do s = s + 1return s

Algorithm *Cow*(*n*) s = 0 for *i* = 1 to *n* do for *j* = 1 to 5 do s = s + 1 return s

Algorithm *Cat*(*n*) s = 0for *i* = 1 to 5 do s = s + 1return s

Algorithm *Bird*(*n*)

$$s = 0$$

for *i* = 1 to 5 do
for *j* = 1 to 5 do
 $s = s + 1$
return s

Algorithm Dog(n) s = nwhile s > 1 s = s / 2return s